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Single trace integral formulations of second kind

for acoustic scattering with metallic domain

Abstract

We study the scattering of acoustic waves by an object composed of several adjacent
parts with different material properties. One of the part is an impenetrable metallic
domain. For this problem we derive an integral formulation of the second kind. This
formulation only involves one Dirichlet datum and one Neumann datum at each point of
each interface of the object.
This document is the result of an internship supervised by Dr X. Claeys in the department
of Mathematics, Computer Science and Control Theory (DMIA) of the University of
Toulouse, ISAE, between March and July 2012.

The simulation of wave propagation in a medium with piecewise constant wave number
has several apllications related to acoustics and electromagnetics. To study this type of prob-
lems, one possible approach is to transform partial derivate equations (PDEs) into boundary
integral equations (BIEs). Most of the literature about BIEs deals with objects composed at
most of two parts with different material properties. However, in practice, the geometrical
configuration implies to study the case with three or more different parts adjacent to each
other : the multiple subdomains scattering.

About multiple subdomains scattering, von Petersdorff proposed a formumlation of first
kind for scalars problems in [7], extended by Buffa to Maxwell’s equations in [2]. In these
formulations, transmission conditions are taken in account via the choice of variational spaces
and it only involves one Dirichlet datum and one Neumann datum at each point of each
interface of the object. These formulations are called single trace formulations of first kind.
However they aren’t well conditionned and no efficient conditionner has been proposed for
them.

More recently, in [5], Hiptmair and Jerez-Hanckes developped another integral formulation
of first kind for multiple subdomains scattering, with good properties in terms of precondi-
tionning but the preconditionning requires the solution to integral equations local to each
subdomain. They called this formulation multitrace formulation of first kind, as all unknows
of the problem are doubled on each interface.

Claeys proposed first a single trace formulation of second kind in [3] for multiple subdo-
mains scattering. Because it is of second kind, his formulation is intrisically well conditionned.

In this report, we study the scattering of acoustic waves by an object composed of several
adjacent parts with different material properties and one of the part is an impenetrable
metallic domain : we call it multiple subdomains scattering with metallic domain. We propose
a single trace formulation of second kind. This work is the continuity of the work done by
Claeys in [3].

We describe first the problem we consider in Section 1. Then we introduce the adapted
functionnal spaces to study our problem in Section 2. We propose in Section 3 a single
trace formulation of second kind for scattering by one isolated metallic domain and we test
it numerically in 2-D. We delevoppe finally in Section 4 a single trace formulation of second
kind for multiple subdomains scattering with one metallic domain and we test it numerically
in 2-D.
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1 Setting of the problem

We consider a partition Rd = ∪n+1
i=0 Ωi where ∪n+1

i=1 Ωi is bounded : Ω0 is the exterior domain
and Ωn+1 is the metallic domain. Each Ωi is a connnected open Lipschitz subset.
We also set Ω = Rd \ Ωn+1 (∂Ω = ∂Ωn+1) and Γ = ∪n+1

i=0 ∂Ωi. Note that there may exist
points where three or more sub-domains would be contiguous, which is precisely the situation
that we wish to tackle. For each i the vector ni refers to the normal vector on ∂Ωi directed
toward the exterior of Ωi.

The problem that we study Let uinc ∈ H1
loc(∆,Rd) satisfy ∆uinc + κ2

0 uinc = 0 in Rd for
some κ0 ∈ R. This function plays the role of incident field. In the present report we study
the following problem:

Find u ∈ H1
0,loc(∆,Ω) such that (1){

∆u+ κ2
iu = 0 in Ωi , i = 0 . . . n

u− uinc outgoing radiating in Ω0

(2)

where each κi ∈ R+ refers to the wave number inside Ωi. In Equation (2), the outgoing
radiation condition refers to the standard Sommerfeld radiation condition, see [4, 6]. It can
be reformulated as

lim
r→∞

ˆ
∂Br

|∂ru− iκ0u|2d∂Ωr = 0 with r = |x| . (3)

where Br = {x ∈ Rd| |x| < r}. Transmission conditions are imposed through Equation (1).
Problem (1)-(2) is a mix of transmission problems for ∪ni=0Ωi and impenetrable problem for
Ωn+1 (modelised by an homogeneous Dirichlet condition on ∂Ω = ∂Ωn+1).

2 Adapted functionnal spaces

We present here the right spaces for Problem (1)-(2) : the Multi and Single trace spaces.

Multi trace space In order to reformulate Equation (2) as an integral equation posed over
Γ, a natural functional setting consists in taking cartesian products of trace spaces, namely

H(Γ) =
n
Π
j=0

[
H

1
2 (∂Ωj)×H−

1
2 (∂Ωj)

]
equipped with the norm

‖U‖ =
( n∑
j=0

‖uj‖2
H

1
2 (∂Ωj)

+ ‖pj‖2
H− 1

2 (∂Ωj)

) 1
2

when U = (uj , pj)0≤j≤n

It is a Hilbert space. Note that the maximum index is n and not n+ 1 ans observe that this
space can be identified to its own dual by means of the following duality pairing

B(U, V ) =
n∑
i=0

ˆ
∂Ωi

ui qi dσ −
ˆ
∂Ωi

pi vi dσ

where U = (uj , pj)0≤j≤n ∈ H(Γ) and V = (vj , qj)0≤j≤n ∈ H(Γ)

This bilinear form is non-degenerate: if B(U, V ) = 0 ∀V ∈ H(Γ) then U = 0.
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Single trace spaces Now we introduce spaces that seem more adapted to the treatment
of transmission conditions. This setting is inspired by [1]. We set

X+ 1
2 (Γ) =

{
(vi) ∈ Πn

i=0 H
1
2 (∂Ωi)

∣∣∣ ∃v ∈ H1
loc(Ω) with v|∂Ωj

= vj , ∀j = 0 . . . n
}

X−
1
2 (Γ) =

{
(qi) ∈ Πn

i=0 H−
1
2 (∂Ωi)

∣∣∣ ∃q ∈ H(div,Ω) with nj · q|∂Ωj
= qj , ∀j = 0 . . . n

}
X(Γ) =

{
(vj , qj)0≤j≤n ∈ H(Γ)

∣∣∣ (vj) ∈ X+ 1
2 (Γ) and (qj) ∈ X−

1
2 (Γ)

}
X̂+ 1

2 (Γ) =
{

(vi) ∈ Π
n+1
i=0 H

1
2 (∂Ωi)

∣∣∣ ∃v ∈ H1
loc(Ω) with v|∂Ωj

= vj , ∀j = 0 . . . n and γn+1
d,c (v) = vn+1

}
X̂−

1
2 (Γ) =

{
(qi) ∈ Π

n+1
i=0 H−

1
2 (∂Ωi)

∣∣∣ ∃q ∈ H(div,Ω) with nj · q|∂Ωj
= qj , ∀j = 0 . . . n+ 1

}
X̂(Γ) =

{
(vj , qj)0≤j≤n+1 ∈ H(Γ)

∣∣∣ (vj) ∈ X̂+ 1
2 (Γ) and (qj) ∈ X̂−

1
2 (Γ)

}
X+ 1

2
0,d (Γ) =

{
(vi) ∈ Πn

i=0 H
1
2 (∂Ωi)

∣∣∣ ∃v ∈ H1
0,loc(Ω) with v|∂Ωj

= vj , ∀j = 0 . . . n
}

X0,d(Γ) =
{

(vj , qj)0≤j≤n ∈ H(Γ)
∣∣∣ (vj) ∈ X+ 1

2
0,d (Γ) and (qj) ∈ X−

1
2 (Γ)

}
To get an intuition of these spaces, observe that in the case where Rd = Ω0 ∪ Ω1 so that
Γ = ∂Ω0 = ∂Ω1, there holds X(Γ) = { (v, q, v,−q) | v ∈ H1/2(Γ), q ∈ H−1/2(Γ) }.

Let us prove a result of duality for X0,d(Γ). This result is well known for X(Γ) and X̂(Γ).

Proposition 2.1.
Let (uj) ∈ Πn

j=0H+ 1
2 (∂Ωj) and (pj) ∈ Πn

j=0H−
1
2 (∂Ωj). We have

(i) (uj) ∈ X+ 1
2

0,d (Γ) ⇐⇒
n∑
j=0

ˆ
∂Ωj

ujqj dσ = 0 ∀(qj) ∈ X−
1
2 (Γ)

(ii) (pj) ∈ X−
1
2 (Γ) ⇐⇒

n∑
j=0

ˆ
∂Ωj

pjvj dσ = 0 ∀(vj) ∈ X+ 1
2

0,d (Γ)

Proof:
We only present the proof for (i) since the proof for (ii) is very similar.

⇒ First assume that (uj) ∈ X1/2
0,d (Γ) : ∃u ∈ H1

0,loc(Ω) such that u|∂Ωj
= uj , j = 0 . . . n. Since

Γ is bounded, we may assume that supp(u) is bounded, using a cut-off function if necessary :
so we can take u ∈ H1

0(Ω). Let us define û ∈ H(Rd) the extension of u on all Rd by

û =

{
u in Ω
ũ ∈ H1(Ωn+1) in Ωn+1 with ũ|∂Ωn+1 = u|∂Ωn+1 = 0

Then we can define un+1 = u|∂Ωn+1 = 0. Consider an arbitary (qj) ∈ X−1/2(Γ) : ∃q ∈
H(div,Ω) such that nj · q|∂Ωj

= qj . We can extend q on all Rd as well and the extension q̂ is
defined by

q̂ =

{
q in Ω
q̃ ∈ H(div,Ωn+1) in Ωn+1 with nn+1 · q̃|∂Ωn+1 = nn+1 · q|∂Ωn+1
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Then we can define qn+1 = nn+1 · q|∂Ωn+1 . We obtain applying Green’s Formula

n∑
j=0

ˆ
∂Ωj

ujqjdσ =
n∑
j=0

ˆ
∂Ωj

ujqjdσ +

ˆ
∂Ω
un+1qn+1dσ︸ ︷︷ ︸

= 0

=
n+1∑
j=0

ˆ
∂Ωj

ujqjdσ

=

n+1∑
j=0

ˆ
Ωj

ûdiv(q̂) +∇û · q̂ dx

=

ˆ
Rd

ûdiv(q̂) +∇û · q̂ dx = 0

⇐ Now let us consider an arbitrary (uj) ∈ Πn
j=0H+ 1

2 (∂Ωj) and assume that it satisfies the

condition in the right hand side of (i). For any j = 0 . . . n there exists vj ∈ H1(Ωj) such
that vj |∂Ωj

= uj . Define u ∈ L2(Ω) by u|Ωj = vj , and p ∈ L2(Ω)3 by p|Ωj = ∇vj . For any
q ∈ H0(div,Ω), setting qj = nj · q|∂Ωj

, we have

ˆ
Ω
udiv(q) dx =

n∑
j=0

ˆ
Ωj

vj div(q) dx =

n∑
j=0

ˆ
∂Ωj

uj qj dσ︸ ︷︷ ︸
= 0

−
n∑
j=0

ˆ
Ωj

∇vj · q dx

= −
ˆ

Ω
p · q dx

as (qj) ∈ X−
1
2 (Γ) by definition. Since the preceding identity holds for any

q ∈ H0(div,Ω), this proves that u ∈ H1(Ω). We have now to prove that u|∂Ω = 0.

Now let us take q ∈ H(div,Ω) so n∂Ω · q|∂Ω ∈ H−
1
2 (∂Ω) is well defined. And then applying

Green’s Formula and considering the result we have obtained (which is true for q ∈ H(div,Ω)
as well)

ˆ
Ω
udiv(q) dx=

ˆ
∂Ω
u|∂Ω n∂Ω · q|∂Ωdσ −

ˆ
Ω
p · q dx= −

ˆ
Ω
p · q dx

which proves that :

ˆ
∂Ω

u|∂Ω︸︷︷︸
∈H

1
2 (∂Ω)

n∂Ω · q|∂Ω︸ ︷︷ ︸
∈H− 1

2 (∂Ω)

dσ = 0, ∀q ∈ H(div,Ω)

so that u|∂Ω = 0 because q ∈ H(div,Ω) 7→ n∂Ω · q|∂Ω ∈ H−
1
2 (∂Ω) is surjective. �

Moreover, one obvious consequence of the preceding proposition is that X0,d(Γ) can be identi-
fied with its own polar set under the duality pairing B( , ). More precisely : for any U ∈ H(Γ)
we have

U ∈ X0,d(Γ) ⇐⇒ B(U, V ) = 0 ∀V ∈ X0,d(Γ) (4)

Let us recall that this is also true for U and V in X(Γ) and in X̂(Γ).
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Let us prove now a result of uniqueness in X0,d(Γ) which is usefull to obtain formulations of
first kind like von Petersdorff obtained in [7]. We won’t use this result because we will only
derivate formulations of second kind but it is a quite interesting result.
The operator Cκ refers to the operator defined in [3].

Proposition 2.2.
For any F ∈ H(Γ), there exists a unique U ∈ X0,d(Γ) such that

B(CκU, V ) = B(F, V ) ∀V ∈ X0,d(Γ) .

Proof:
According to Fredholm alternative, in order to prove the result, we only need to show that
the only U ∈ X0,d(Γ) satisfying B(CκU, V ) = 0, ∀V ∈ X0,d(Γ) is U = 0.
Let us take any U = (U0, . . . , Un)> ∈ X0,d(Γ) satisfying B(CκU, V ) = 0, ∀V ∈ X0,d(Γ). Let

us define ψj(x) = Gj
κj{Uj}(x) so : Uj = [γj ] ·Gjκj (Uj) = γj(ψj)− γjc (ψj).

First, let us prove that ψj = 0 in Ωj for all j = 0 . . . n. Lets us consider ϕ ∈ L2
loc(Ω)

such that ϕ|Ωj = ψj , and set Wint = (Id/2 + Cκ)U . We have Wint = (γ0(ϕ), . . . , γn(ϕ)) and
since B(Wint, V ) = B((Id/2 + Cκ)U, V ) = B(CκU, V ) = 0 ,∀V ∈ X0,d(Γ), we deduce that
Wint ∈ X0,d(Γ) according to (4), hence ϕ ∈ H1

0,loc(∆,Ω). To sum up

ϕ ∈ H1
0,loc(∆,Ω) such that

∆ϕ+ κ2
jϕ = 0 in Ωj , j = 0 . . . n

ϕ is outgoing radiating in Ω0.

As a consequence ϕ is solution to an homogeneous transmission problem (that is classically
well posed). Hence ϕ = 0 i.e. ψj = 0 in Ωj for all j = 0 . . . n.

Now let us show that ψj = 0 in Ω \Ωj for all j = 0 . . . n. Set Wext = −(Id/2−Cκ)U . We
have Wext = (γ0

c (ψ0), . . . , γnc (ψn)) and B(Wext, V ) = −B((Id/2 − Cκ)U, V ) = B(CκU, V ) =
0 ,∀V ∈ X0,d(Γ) so Wext ∈ X0,d(Γ) according to (4). Clearly

∆ψj + κ2
jψj = 0 in Ω \ Ωj , j = 0 . . . n

ψj is outgoing for j 6= 0.

Let us consider v = Ψj and q = ∇(Ψj), we have v ∈ H1
0,loc(Ω) and q ∈ Hloc(div,Ω) since

Wext ∈ X0,d(Γ). We can extend v and q on all Rd like we did in Proposition 2.1.
Take r > 0 large enough to ensure that (Rd \Ω0) ⊂ Br = {x ∈ Rd | |x| < r }. Then we have :

ˆ
Br\(Ωj∪Ωn+1)

|∇ψj |2 − κ2
j |ψj |2 dx

=

ˆ
Br\(Ωj∪Ωn+1)

q · ∇v + v div(q) dx

=

ˆ
Br

q · ∇v + v div(q) dx−
ˆ

Ωj

q · ∇v + v div(q) dx−
ˆ

Ωn+1

q · ∇v + v div(q) dx

=

ˆ
∂Br

ψj ∂rψjdσ −
ˆ
∂Ωj

ψj ∂njψjdσ −
ˆ
∂Ωn+1

v|∂Ωn+1 q|∂Ωn+1 · nn+1dσ︸ ︷︷ ︸
= 0
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Finally we have :ˆ
∂Br

ψj ∂rψjdσ =

ˆ
Br\(Ωj∪Ωn+1)

|∇ψj |2 − κ2
j |ψj |2 dx +

ˆ
∂Ωj

γjd,c(ψj)γ
j
n,c(ψj)dσ ∀j 6= 0

0 =

ˆ
Br\(Ω0∪Ωn+1)

|∇ψ0|2 − κ2
0 |ψ0|2 dx +

ˆ
∂Ω0

γ0
d,c(ψ0)γ0

n,c(ψ0)dσ.

Take the imaginary part of the identity above, and sum over j = 0 . . . n, taking into account

that (γjd,c(ψj))0≤j≤n ∈ X1/2(Γ) and (γjn,c(ψj))0≤j≤n ∈ X−1/2
0,d (Γ) (since Wext ∈ X0,d(Γ)). This

yields
n∑
j=1

Im
{ˆ

∂Br

ψj ∂nψjdσ
}

= Im
{ n∑
j=0

ˆ
∂Ωj

γd,c(ψj)γn,c(ψj) dσ
}

= 0.

In the last equality above we used Proposition 2.1. Note that, by construction, ψj is outgoing
radiating with respect to the wave number κj . Combining this condition at infinity with the
identity above for j = 1 . . . n yields

n∑
j=1

ˆ
∂Br

|∂rψj |2 + κ2
j |ψj |2dσ

=

n∑
j=1

ˆ
∂Br

|∂rψj − iκjψj |2dσ −
n∑
j=1

Im
{ˆ

∂Br

ψj ∂rψjdσ
}
−→
r→∞

0.

This shows in particular that limr→∞
´
∂Br
|ψj |2dσ = 0 for all j = 1 . . . n. As a consequence,

we can apply Rellich Lemma, see Lemma 2.11 in [4], which implies that ψj = 0 in Ω \Ωj , j =
1 . . . n. There only remains to deal with ψ0. According to the transmission conditions satisfied
by ψ0 we have γ0

d,c(ψ0) = 0 and γ0
n,c(ψ0) = 0. Hence −ψ0(x) = G0

κ0
{γ0

c (ψ0)}(x) = 0 in Ω\Ω0.

Since Uj = γj(ψj)− γjc (ψj) = 0 for all j = 0 . . . n, U = 0. �

3 Single trace formulation of second kind for scattering by one
isolated metallic domain

In this section we study the acoustic scattering by one isolated metallic domain so we consider
two domains : the exterior domain Ω0 and the metallic domain Ω1.

3.1 Theoretical study

We conisder a partition Rd = Ω0 ∪ Ω1 where Ω1 is bounded. We set Γ = ∂Ω0 = ∂Ω1.

The problem that we study Let uinc ∈ H1
loc(∆,Rd) satisfy ∆uinc + κ2 uinc = 0 in Rd for

some κ ∈ R. This function plays the role of incident field. We study the following problem:

Find u ∈ H1
0,loc(∆,Ω0) such that (5){

∆u+ κ2u = 0 in Ω0

u− uinc outgoing radiating in Ω0

(6)
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Adapted functionnal space To derivate the variational formulation we need to introduce
a new trace space. This space is a complementary of X0,d(Γ) in H(Γ) and we call it Y0,n(Γ).
This space is defined by

Y0,n(Γ) =
{

(vj , qj)0≤j≤n ∈ H(Γ)
∣∣∣ (vj) ∈ X+ 1

2 (Γ) and (qj) ∈ Y−
1
2

0,n (Γ)
}

with Y−
1
2

0,n (Γ) =
{

(qi) ∈ Πn
i=0 H−

1
2 (∂Ωi)

∣∣∣ ∃q ∈ H0(div,Ω) with nj · q|∂Ωj
= qj , ∀j = 0 . . . n

}
Variatonal formulation Set Uinc = (γ0

d(uinc), γ
0
n(uinc)) = (vinc, qinc) ∈ X(Γ) and

U = (γ0
d(u), γ0

n(u)) = (v, q) ∈ X0,d(Γ). Then it is well known that the variational formulation
of (5)-(6) is :

Find U ∈ X0,d(Γ) such that (
Id

2
− Cκ)(U − Uinc) = 0 (7)

First it is clear that U = (0, q) since u|Γ = 0 and (Lemma 4.1) G0
κ(γ0(uinc))+G1

κ(γ1(uinc)) = 0
wich implies γ1 ·G0

κ(γ0(uinc)) + γ1 ·G1
κ(γ1(uinc)) = 0.

Remember thatγ1 · G1
κ(γ1(uinc)) = γ1(uinc) since γ1(uinc) is a Cauchy data in Ω1 and

γ0
c (uinc) = Q γ1(uinc) with

Q =

(
1 0
0 −1

)
we obtain γ0

c ·G0
κ(γ0(uinc)) + γ0

c (uinc) = 0.
With γ0

c · G0
κ = − Id

2 + Cκ and γ0
c (uinc) = γ0(uinc) since uinc ∈ H1

loc(∆,Rd), we obtain

( Id
2 − Cκ)Uinc = Uinc.

The variational formulation (7) can be finally rewritten

Find U = (0, q) ∈ X0,d(Γ) such that

B(( Id
2 − Cκ)U, V ) = B(Uinc, V ) ∀V = (w, 0) ∈ Y0,n(Γ)

wich means

Find q ∈ H−
1
2 (Γ) such that

ˆ
Γ
(
Id

2
− K̃)q w dσ =

ˆ
Γ
qincw dσ ∀w ∈ H

1
2 (Γ)

(8)

It is clear that (5)-(6) implies (8) : if u is solution of (5)-(6) then q = γ0
N (u) is solution of (8).

Let us prove the other implication considering q ∈ H−
1
2 (Γ) such that

ˆ
Γ
(
Id

2
− K̃)q w dσ =

ˆ
Γ
qincw dσ ∀w ∈ H

1
2 (Γ)

and define Ψ(x) = SLκ{q}(x) ∀x ∈ Rd \ Γ. Clearly :
−∆Ψ− κ2Ψ = 0 in Ω1

γ0
N,C(Ψ) = −qinc

Ψ outgoing
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and then we have Ψ = −uinc in Ω1 because this problem is well posed so γ0
D(Ψ) = −γ0

D(uinc).
Let us define :

u = Ψ︸︷︷︸
∈H1

loc(∆,Rd)

+ uinc︸︷︷︸
∈H1

loc(∆,Rd)

∈ H1
loc(∆,Ω)

This function is equal to 0 in Ω1 by cunstruction and we have −∆uinc − κ2uinc = 0 in Ω0

and −∆Ψ− κ2Ψ = 0 in Ω0 so we finally have :
∆u+ κ2u = 0 in Ω0

γ0
D(u) = 0

u− uinc outgoing radiating in Ω0

(9)

with q = [γ0
N (Ψ)] = [γ0

N (u)] = γ0
N (u). �

3.2 Numerical experiments

In this paragraph we present numerical results obtained by discretizing formulation (8), in
two dimensions, using a Galerkin method we describe below. In this numerical experiment
we work on a diffraction problem of a plane wave by a circular metallic object. The interest
is that the analytic solution is well known so we can test the code easily. We use GMSH to
generate a mesh of the circle, a C-library of integral equations (developed by Patrick Meury)
to assembly operators and MATLAB to plot results and any usefull information. All the
functions we add are written in C-language. We don’t use any C-library of linear algebra.

Discretized formulation For discretization, we considered a paneling Γ = ∪N
i=1Γih of the

unit circle where each Γih is a segment. Then we considered the space V+ 1
2

h (Γ) with

V+ 1
2

h (Γ) = {vh ∈ C0(Γ) | vh|Γi
h
∈ P1 for Γih ⊂ Γ, i = 1 . . .N}

V+ 1
2

h (Γ) is an approximation space for H−
1
2 (Γ) and H+ 1

2 (Γ).

Setting Q = {qi}i=1...N and Qinc = {qiinc}i=1...N, the discretized formulation of (8) is

Find q ∈ V+ 1
2

h (Γ) such that

(
M

2
− K̃) Q = M Qinc

(10)

where M is the mass matrix of P1 functions. Because we use C-language, we need to separate
real and imaginary parts. Then the formulation (10) becomes

Find q ∈ V+ 1
2

h (Γ) such thatM

2
−<e(K̃) =m(K̃)

−=m(K̃)
M

2
−<e(K̃)

(<e(Q)
=m(Q)

)
=

(
M <e(Qinc)
M =m(Qinc)

) (11)

9



Mesh generation We use GMSH to create the mesh which modelises the mettalic domain.
In Fig.1 and Fig.2 we represent the circular mesh with GMSH and MATLAB.

Fig.1 Unit circle displayed on GMSH

Fig.2 Circular Mesh ploted on Matlab with a step h = 0.2

The C-library of integral equations we use need a specific format of mesh so we have written
a routine which gives this specific format from the .msh file generated by GMSH.

10



Assembly To assemble <e(A) and =m(A), we use the C-library of integral equations of
Patrick Meury. Concerning the assembly of the load vector, we study the diffraction of a plave
wave so we take uinc(r, θ) = eiκr cos θ as an incident field. Using the Jacobi-Anger formula, we
can write uinc(r, θ) = eiκr cos θ =

∑+∞
n=−∞ i

nJn(κr)einθ and then

qinc(r, θ) = −∂ uinc

∂r
= −

+∞∑
n=−∞

κinJ′n(κr)einθ

On the unit circle, qinc is only a function of theta. Separating real and imaginary parts we
obtain

<e {qinc(θ)} =
+∞∑

n=−∞

κ(−1)n

2

(
J2n+1(κ)− J2n−1(κ)

)
cos 2n.θ

+

+∞∑
n=−∞

κ(−1)n+1

2

(
J2n+2(κ)− J2n(κ)

)
sin 2n+ 1.θ

=m {qinc(θ)} =
+∞∑

n=−∞

κ(−1)n

2

(
J2n+1(κ)− J2n−1(κ)

)
sin 2n.θ

+

+∞∑
n=−∞

κ(−1)n

2

(
J2n+2(κ)− J2n(κ)

)
cos 2n+ 1.θ

Solving of the linear system To solve the linear system (11), we use the mininmum
residual method. We have implemented this algortihm in C-language.

Test To test our code we compare the solution we obtain and the analytical solution which
is given by the derivate q(r, θ) of u(r, θ) = uinc(r, θ) + udiff(r, θ) with

uinc(r, θ) =

+∞∑
n=−∞

inJn(κr)einθ and udiff(r, θ) =

+∞∑
n=−∞

αn
H(1)
n (κr)

H(1)
n (κ)

einθ

αn is chosen to have u(r = 1, θ) = 0, ∀θ, so we finally have

u(r, θ) =
+∞∑

n=−∞

(
inJn(κr)− in Jn(κ)

H(1)
n (κ)

H(1)
n (κr)

)
einθ

and then

q(r, θ) = −∂ u(r, θ)

∂r
=

+∞∑
n=−∞

κ
(
− inJ′n(κr) + in

Jn(κ)

H(1)
n (κ)

H(1)′
n (κr)

)
einθ

Using

H(1)′
n (κr)

H(1)
n (κ)

=
H(1)′
n (κr)H(1)

n (κ)

|H(1)
n (κ)|2

=

(
J′n(κ)Jn(κ) + Y′n(κ)Yn(κ)

)
|H(1)

n (κ)|2
+ i

2

πκ|H(1)
n (κ)|2

for r = 1

and writting q(r, θ) = q1(r, θ) + q2(r, θ) + q3(r, θ) we obtain

11



q1(θ) =
+∞∑

n=−∞

κJn(κ)in

2|H(1)
n (κ)|2

(
[Jn−1(κ)− Jn+1(κ)]Jn(κ) + [Yn−1(κ)−Yn+1(κ)]Yn(κ)

)
einθ

q2(θ) =
+∞∑

n=−∞

2Jn(κ)in+1

π|H(1)
n (κ)|2

einθ

q3(θ) =

+∞∑
n=−∞

κin

2

(
Jn+1(κ)− Jn−1(κ)

)
einθ

<e
{
q1(θ)

}
=

+∞∑
n=−∞

κ(−1)n

2

J2n(κ)

|H(1)

2n(κ)|2
(

[J2n−1(κ)− J2n+1(κ)]J2n(κ)
)

cos 2n.θ

+
+∞∑

n=−∞

κ(−1)n

2

J2n(κ)

|H(1)

2n(κ)|2
(

[Y2n−1(κ)−Y2n+1(κ)]Y2n(κ)
)

cos 2n.θ

+
+∞∑

n=−∞

κ(−1)n+1

2

J2n+1(κ)

|H(1)

2n+1(κ)|2
(

[J2n(κ)− J2n+2(κ)]J2n+1(κ)
)

sin 2n+ 1.θ

+

+∞∑
n=−∞

κ(−1)n+1

2

J2n+1(κ)

|H(1)

2n+1(κ)|2
(

[Y2n(κ)−Y2n+2(κ)]Y2n+2(κ)
)

sin 2n+ 1.θ

=m
{
q1(θ)

}
=

+∞∑
n=−∞

κ(−1)n

2

J2n(κ)

|H(1)

2n(κ)|2
(

[J2n−1(κ)− J2n+1(κ)]J2n(κ)
)

sin 2n.θ

+

+∞∑
n=−∞

κ(−1)n

2

J2n(κ)

|H(1)

2n(κ)|2
(

[Y2n−1(κ)−Y2n+1(κ)]Y2n(κ)
)

sin 2n.θ

+
+∞∑

n=−∞

κ(−1)n

2

J2n+1(κ)

|H(1)

2n+1(κ)|2
(

[J2n(κ)− J2n+2(κ)]J2n+1(κ)
)

cos 2n+ 1.θ

+
+∞∑

n=−∞

κ(−1)n

2

J2n+1(κ)

|H(1)

2n+1(κ)|2
(

[Y2n(κ)−Y2n+2(κ)]Y2n+2(κ)
)

cos 2n+ 1.θ

<e
{
q2(θ)

}
=

+∞∑
n=−∞

2(−1)n+1

π

J2n(κ)

|H(1)

2n(κ)|2
sin 2n.θ +

+∞∑
n=−∞

2(−1)n+1

π

J2n+1(κ)

|H(1)

2n+1(κ)|2
cos 2n+ 1.θ

=m
{
q2(θ)

}
=

+∞∑
n=−∞

2(−1)n

π

J2n(κ)

|H(1)

2n(κ)|2
cos 2n.θ +

+∞∑
n=−∞

2(−1)n+1

π

J2n+1(κ)

|H(1)

2n+1(κ)|2
sin 2n+ 1.θ

<e
{
q3(θ)

}
=

+∞∑
n=−∞

κ(−1)n

2

(
J2n+1(κ)− J2n−1(κ)

)
cos 2n.θ

+

+∞∑
n=−∞

κ(−1)n+1

2

(
J2n+2(κ)− J2n(κ)

)
sin 2n+ 1.θ

=m
{
q3(θ)

}
=

+∞∑
n=−∞

κ(−1)n

2

(
J2n+1(κ)− J2n−1(κ)

)
sin 2n.θ

+

+∞∑
n=−∞

κ(−1)n

2

(
J2n+2(κ)− J2n(κ)

)
cos 2n+ 1.θ
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Results In this paragragh we show the results we have obtained with our discretized for-
mulation (11). As above, q is the exact solution of our problem (components qi) ; let us call
qh the approximate solution (components qh

i ). In figures Fig.3 and Fig.4we represent the
quadratic errors about real part and imaginary part as functions of the step of the mesh, for a
few values of κ (in reality we represent quadratic errors multiplied by h−

1
2 to simulate L2(Γ)

errors).

E
rr

or
=

h
−

1 2
.√ ∑

i
|<
e(
q i

)
−
<
e(
qh i

)|2
√ ∑

i
|<
e(
q i

)|2

Step of the mesh h

Fig.3 Error about real part for a
few values of κ

E
rr

or
=

h
−

1 2
.√ ∑

i
|=
m

(q
i)
−
=
m

(q
h i
)|2

√ ∑
i
|=
m

(q
i)
|2

Step of the mesh h

Fig.4 Error about imaginary part
for a few values of κ

In figure Fig.5 we represent the condition number of the matrix associated to (11) as a
function of the step of the mesh, for κ = 1.

C
on

d
it

io
n

n
u

m
b

er

Step of the mesh h

Fig.5 Stable conditioning

13



We observe that the condition number of this matrix is bounded independently of the step of
the mesh : that is the principal interest of this method. The consequence is that the number
of iterations to solve the linear system is independent of the step of the mesh.

4 Multi potentiel operator and single trace formulation of sec-
ond kind for multiple subdomains scattering (including one
metallic domain)

We study in this section the scattering of acoustic waves by an object composed of several ad-
jacent parts with different material properties and one of the part is an impenetrable metallic
domain. This is the heart of our report.

Let us define a continuous operator Aκ : H(Γ)→ H(Γ) by

Φ(U)(x) =
n∑
i=0

DLiκi{ui}(x) + SLiκi{pi}(x) x ∈ Rd \ Γ

and Aκ = (γ0
d · Φ, γ0

n · Φ, . . . , γnd · Φ, γnn · Φ)>

for U = (u0, p0, . . . , un, pn)>

(12)

Important here is to note that, in Definition (12), all potentials are considered as functions
defined everywhere except on Γ.

4.1 General case : one exterior domain Ω0 and n + 1 multiple subdomains

We consider a partition Rd = ∪n+1
i=0 Ωi where ∪n+1

i=1 Ωi is bounded and each Ωi is a connnected
open Lipschitz subset. We also set Ω = Rd \ Ωn+1 (∂Ω = ∂Ωn+1) and Γ = ∪n+1

i=0 ∂Ωi.
Ωn+1 modelises an impenetrable metallic domain. We only study the case where all wave
numbers are equals, then we have the lemma below.

Lemma 4.1.
Assume that κj = κ,∀j = 0 . . . n. In this case, Φ(U)(x) = 0 ∀x ∈ Rd for any U ∈ X(Γ) and

for any U ∈ X̂(Γ).

The problem that we study Let uinc ∈ H1
loc(∆,Rd) satisfy ∆uinc + κ2 uinc = 0 in Rd for

some κ ∈ R. This function plays the role of incident field. In the present report we study the
following problem:

Find u ∈ H1
0,loc(∆,Ω) such that (13){

∆u+ κ2u = 0 in Ωi , i = 0 . . . n

u− uinc outgoing radiating in Ω0

(14)

Let us set Uinc = (γj(uinc))0≤j≤n ∈ X(Γ) and U = (Uj)0≤j≤n = (γj(u))0≤j≤n ∈ X0,d(Γ). It is
clear that if u is solution of (13)-(14) then (Id−A)(U − Uinc) = 0.

14



Let us define F = (Id−A)Uinc. Then our variational formulation of second kind of (13)-(14)
is :

Find U ∈ X0,d(Γ) such that

B((Id−A)U, V ) = B(F, V ) ∀V =∈ Y0,n(Γ)
(15)

So if u is solution of (13)-(14) then U = (γj(u))0≤j≤n is solution of (15).
Let us prove the other implication considering U ∈ X0,d(Γ) wich verifies (15) and define
Ψ(x) = Φ(U)(x) ∀x ∈ Rd \ Γ : Ψ is outgoing and −∆Ψ− κ2Ψ = 0 in Ωn+1.
Let us prove that Ψ = −uinc ∈ Ωn+1 : for that, we need to prove that γn+1(Ψ) = −γn+1(uinc).
Then we will set u = Ψ + uinc ∈ H1

0,loc(∆,Ω) with ∆uinc + κ2uinc = 0 in Ωi , i = 0 . . . n and

∆Ψ + κ2Ψ = 0 in Ωi , i = 0 . . . n to have :{
∆u+ κ2u = 0 in Ωi , i = 0 . . . n

u− uinc outgoing radiating in Ω0

Let us consider Un+1 and Vn+1 in H(∂Ω) such that (U,Un+1) ∈ X̂(Γ) and (V, Vn+1) ∈ X̂(Γ).
Then it is clear that

Ψ(x) = Φ(U)(x) =
n∑
i=0

Gi
κ{Ui}(x) + Gn+1

κ {Un+1}︸ ︷︷ ︸
= 0

−Gn+1
κ {Un+1}

wich implies Un+1 = −[γn+1(Ψ)], and

B(U, V ) =
n∑
i=0

Bi(Ui, Vi) + Bn+1(Un+1, Vn+1)︸ ︷︷ ︸
= 0

−Bn+1(Un+1, Vn+1)

So finally B(U, V ) = Bn+1([γn+1(Ψ)], Vn+1).
Moreover we have AU = (γj · Φ(U))0≤j≤n = (γj · Ψ)0≤j≤n and with the same calculation
B(AU, V ) = −Bn+1(γn+1

c (Ψ), Vn+1) so B((Id−A)U, V ) = Bn+1(γn+1(Ψ), Vn+1).
Now let us develop B((Id−A)Uinc, V ). Since (γj(uinc))0≤j≤n+1 ∈ X̂(Γ) we have

n+1∑
i=0

Gi
κ{γi(uinc)}(x) = 0

and then Φ(Uinc) = −Gn+1
κ {γn+1(uinc)} and AUinc = (−γj · Gn+1

κ {γn+1(uinc)})0≤j≤n = 0
because of the caracterisation of the integral representation. Then we have

B((Id−A)Uinc, V ) = B(Uinc, V )︸ ︷︷ ︸
=−Bn+1(γn+1(uinc),Vn+1)

− B(AUinc, V )︸ ︷︷ ︸
= 0

We finally obtain comparing B((Id−A)U, V ) and B((Id−A)Uinc, V )

Bn+1(γn+1(Ψ), Vn+1) = −Bn+1(γn+1(uinc), Vn+1), ∀Vn+1 ∈ H(∂Ω)

which implies γn+1(Ψ) = −γn+1(uinc) because B is non-degenerate. �

15



4.2 Toy problem : one exterior domain Ω0 and two subdomains Ω1 and Ω2

We will explicit here our variational formulation (15) with a toy problem.

4.2.1 Theoretical study

We consider a partition R2 = Ω0∪Ω1∪Ω2 where Ω1∪Ω2 is bounded and each Ωi is a connnected
open Lipschitz subset. Ω0 and Ω1 have the same physical properties so the boundary between
theses two domains is fictional. Ω2 modelises an impenetrable metallic domain : we work on
a diffraction problem of a plane wave by a circular metallic object.
We set Ω = R2 \ Ω2, Γ0 = ∂Ω0, Γ1 = ∂Ω1, Γ2 = ∂Ω2, Γ = Γ0 ∪ Γ1 ∪ Γ2, Γ01 = Γ0 ∩ Γ1,
Γ02 = Γ0 ∩ Γ2 and Γ12 = Γ1 ∩ Γ2.

Trace spaces In this case (n+ 1 = 2) we have :

U =

[
U0(X)
U1(Y )

]
=


Ud

0 (X)
Un

0 (X)
Ud

1 (Y )
Un

1 (Y )

 ∈ X0,d(Γ) ⇐⇒




Ud

0 (X)
Un

0 (X)
Ud

1 (Y )
Un

1 (Y )

 ∈ H
1
2 (Γ0)×H−

1
2 (Γ0)×H

1
2 (Γ1)×H−

1
2 (Γ1)

Ud
0 (X) = Ud

1 (X) ∀X ∈ Γ01

Ud
0 (X) = 0 ∀X ∈ Γ02

Ud
1 (Y ) = 0 ∀Y ∈ Γ12

Un
0 (Y ) = −Un

1 (Y ) ∀Y ∈ Γ01

(16)

V =

[
V0(X)
V1(Y )

]
=


V d

0 (X)
V n

0 (X)
V d

1 (Y )
V n

1 (Y )

 ∈ Y0,n(Γ) ⇐⇒




V d

0 (X)
V n

0 (X)
V d

1 (Y )
V n

1 (Y )

 ∈ H
1
2 (Γ0)×H−

1
2 (Γ0)×H

1
2 (Γ1)×H−

1
2 (Γ1)

V n
0 (X) = V n

1 (X) ∀X ∈ Γ01

V n
0 (X) = 0 ∀X ∈ Γ02

V n
1 (Y ) = 0 ∀Y ∈ Γ12

V d
0 (Y ) = −V d

1 (Y ) ∀Y ∈ Γ01

(17)

The problem that we study Let uinc ∈ H1
loc(∆,Rd) satisfy ∆uinc + κ2 uinc = 0 in Rd for

some κ ∈ R. This function plays the role of incident field. In the present report we study the
following problem:

Find u ∈ H1
0,loc(∆,Ω) such that (18)

∆u+ κ2u = 0 in Ω0

∆u+ κ2u = 0 in Ω1

u− uinc outgoing radiating in Ω0

(19)
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We have shown that (18)-(19) is equivalent to

Find U ∈ X0,d(Γ) such that

B((Id−A)U, V ) = B(F, V ) ∀V =∈ Y0,n(Γ)
(20)

Now we will consider only the case U inc = [U inc
0 (X) = γ0(uinc) ; U inc

1 (Y ) = 0 ]. Then

F = (Id−A)U inc =

[
γ0(uinc)− γ0 ·G0

κ(γ0(uinc))
−γ1 ·G0

κ(γ0(uinc))

]
=

[
γ0(uinc)
γ1(uinc)

]
Let us clarify what B(U, V ) is :

B(U, V ) = B
([U0

U1

]
,

[
V0

V1

])
= B0(U0, V0) + B1(U1, V1)

wich means B(U, V ) =
´
∂Ω0

Ud
0 V

n
0 dσ −

´
∂Ω0

Un
0 V

d
0 dσ +

´
∂Ω1

Ud
1 V

n
1 dσ −

´
∂Ω1

Un
1 V

d
1 dσ

and using (16) and (17) we obtain

B(U, V ) = 2

ˆ
Γ01

Ud
0 V

n
0 dσ −

ˆ
∂Ω0

Un
0 V

d
0 dσ −

ˆ
∂Ω1

Un
1 V

d
1 dσ (21)

Let us now clarify what B(AU, V ) is :

B(AU, V ) = B
([γ0 ·G0

κ{U0}+ γ0 ·G1
κ{U1}

γ1 ·G0
κ{U0}+ γ1 ·G1

κ{U1}

]
,

[
V0

V1

])
=

∑
i,j = 0,1

Bi(γ
i ·Gjκ{Uj}, Vi)

wich means

B(AU, V ) =
∑

i,j = 0,1

ˆ
∂Ωi

γid ·DLjκ{Ud
j }V n

i dσ︸ ︷︷ ︸
1

+
∑

i,j = 0,1

ˆ
∂Ωi

γid · SLjκ{Un
j }V n

i dσ︸ ︷︷ ︸
2

−
∑

i,j = 0,1

ˆ
∂Ωi

γin ·DLjκ{Ud
j }V d

i dσ︸ ︷︷ ︸
3

−
∑

i,j = 0,1

ˆ
∂Ωi

γin · SLjκ{Un
j }V d

i dσ︸ ︷︷ ︸
4

with

1 =
∑

i,j = 0,1

ˆ
∂Ωi

γid ·DLjκ{Ud
j }V n

i dσ =

ˆ
∂Ω0

γ0
d ·DL0

κ{Ud
0 }V n

0 dσ +

ˆ
∂Ω0

γ0
d ·DL1

κ{Ud
1 }V n

0 dσ

+

ˆ
∂Ω1

γ1
d ·DL0

κ{Ud
0 }V n

1 dσ +

ˆ
∂Ω1

γ1
d ·DL1

κ{Ud
1 }V n

1 dσ
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and using (16) and (17)

1 = 2

ˆ
Γ01

{γ0
d} ·DL0

κ{Ud
0 }V n

0 dσ + 2

ˆ
Γ01

{γ1
d} ·DL1

κ{Ud
1 }V n

1 dσ (22)

We also obtain

2 = 2

ˆ
Γ01

{γ0
d} · SL0

κ{Un
0 }V n

0 dσ + 2

ˆ
Γ01

{γ1
d} · SL1

κ{Un
1 }V n

1 dσ (23)

3 = −
ˆ
∂Ω0

γ0
n ·DL0

κ{Ud
0 }V d

0 dσ −
ˆ
∂Ω0

γ0
n ·DL1

κ{Ud
1 }V d

0 dσ

−
ˆ
∂Ω1

γ1
n ·DL0

κ{Ud
0 }V d

1 dσ −
ˆ
∂Ω1

γ1
n ·DL1

κ{Ud
1 }V d

1 dσ
(24)

4 = −
ˆ
∂Ω0

γ0
n · SL0

κ{Un
0 }V d

0 dσ −
ˆ
∂Ω0

γ0
n · SL1

κ{Un
1 }V d

0 dσ

−
ˆ
∂Ω1

γ1
n · SL0

κ{Un
0 }V d

1 dσ −
ˆ
∂Ω1

γ1
n · SL1

κ{Un
1 }V d

1 dσ
(25)

4.2.2 Numerical experiments

In this paragraph we present numerical results obtained by testing a discretized formulation
of (20) using a Petrov-Galerkin method we describe below.
Ω2 is the unit disk and Ω1 is an half annulus centered in the origin of small radius 1 and large
radius 2.
One more time we use GMSH to generate a mesh of the domain’s boundary, a C-library of
integral equations (developed by Patrick Meury) to assembly operators and MATLAB to plot
results and any usefull information. All the functions we add are written in C-language. We
don’t use any C-library of linear algebra.

Discretization For discretization, we considered a paneling Γh = ∪NΓ
i=1Γh

i of Γ where each
Γh
i is a segment. Let us call IΓ = {1, 2, 3, .. ,NΓ} the set of indexes of Γh nodes, size NΓ.

We also consider a paneling Γh
0 = ∪N0

i=1Γh
0,i of Γ0 and I0 ⊂ IΓ (size N0), a paneling Γh

1 = ∪N1
i=1Γh

1,i

of Γ1 and I1 ⊂ IΓ (size N1), a paneling Γh
2 = ∪N2

i=1Γh
2,i of Γ2 and I2 ⊂ IΓ (size N2) and a pan-

eling Γh
01 = ∪N01

i=1Γh
01,i of Γ01 and I01 = I0 ∩ I1 ⊂ IΓ (size N01).

Let us call I02 = I0 ∩ I2 and I12 = I1 ∩ I2. Of course we have IΓ = I0 ∪ I1 ∪ I2 and I01 6= ∅
(because Γ01 6= ∅).

Then we considered the space V+ 1
2

h (Γ0) with

V+ 1
2

h (Γ0) = {vh ∈ C0(Γ0) | vh|Γh
0,i
∈ P1 for Γh

0,i ⊂ Γh
0 , i = 1 . . .N0} = span

i∈I0

{Φi
0}

V+ 1
2

h (Γ0) is an approximation space for H−
1
2 (Γ0) and H+ 1

2 (Γ0). We also define V+ 1
2

h (Γ1) to

approximate H−
1
2 (Γ1) and H+ 1

2 (Γ1).
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Let us call Xh
0,d(Γ) the approximtion space for X0,d(Γ).

Uh =

[
Uh

0 (X)
Uh

1 (Y )

]
=


Uh,d

0 (X)

Uh,n
0 (X)

Uh,d
1 (Y )

Uh,n
1 (Y )

 =

NΓ∑
i=1


δiI0 U

h,d
0 (Xi) Φi

0(X)

δiI0 U
h,n
0 (Xi) Φi

0(X)

δiI1 U
h,d
1 (Yi) Φi

1(Y )

δiI1 U
h,n
1 (Yi) Φi

1(Y )

 ∈ Xh
0,d(Γ)

⇐⇒




Uh,d

0 (X)

Uh,n
0 (X)

Uh,d
1 (Y )

Uh,n
1 (Y )

 ∈ V+ 1
2

h (Γ0)× V+ 1
2

h (Γ0)× V+ 1
2

h (Γ1)× V+ 1
2

h (Γ1)

Uh,d
0 (Xi) = Uh,d

1 (Xi) ∀i ∈ I01

Uh,d
0 (Xi) = 0 ∀i ∈ I02

Uh,d
1 (Xi) = 0 ∀i ∈ I12

Uh,n
0 (Xi) = −Uh,n

1 (Xi) ∀i ∈ I01

Let us call Yh
0,n(Γ) the approximtion space for Y0,n(Γ).

V h =

[
V h

0 (X)
V h

1 (Y )

]
=


V h,d

0 (X)

V h,n
0 (X)

V h,d
1 (Y )

V h,n
1 (Y )

 =

NΓ∑
i=1


δiI0 V

h,d
0 (Xi) Φi

0(X)

δiI0 V
h,n

0 (Xi) Φi
0(X)

δiI1 V
h,d

1 (Yi) Φi
1(Y )

δiI1 V
h,n

1 (Yi) Φi
1(Y )

 ∈ Yh
0,n(Γ)

⇐⇒




V h,d

0 (X)

V h,n
0 (X)

V h,d
1 (Y )

V h,n
1 (Y )

 ∈ V+ 1
2

h (Γ0)× V+ 1
2

h (Γ0)× V+ 1
2

h (Γ1)× V+ 1
2

h (Γ1)

V h,n
0 (Xi) = V h,n

1 (Xi) ∀i ∈ I01

V h,n
0 (Xi) = 0 ∀i ∈ I02

V h,n
1 (Xi) = 0 ∀i ∈ I12

V h,d
0 (Xi) = −V h,d

1 (Xi) ∀i ∈ I01

Let us define the mass matrix. Using (21) and the definitions of X0,d(Γ) and Y0,n(Γ) we have

B(Uh, V h) = 2

ˆ
Γ01

Uh,d
0 (X)V h,n

0 (X) dσ −
ˆ
∂Ω0

Uh,n
0 (X)V h,d

0 (X) dσ −
ˆ
∂Ω1

Uh,n
1 (Y )V h,d

1 (Y ) dσ

= 2
∑

i,j ∈ I01

Uh,d
0 (Xi)V

h,n
0 (Xj)

ˆ
Γh

01

Φi
0(X)Φj

0(X) dσ

−
∑
i,j ∈ I0

Uh,n
0 (Xi)V

h,d
0 (Xj)

ˆ
Γh

0

Φi
0(X)Φj

0(X) dσ −
∑
i,j ∈ I1

Uh,n
1 (Yi)V

h,d
1 (Yj)

ˆ
Γh

1

Φi
1(Y )Φj

1(Y ) dσ

19



Let us define two submatrix Md,n (size N01 x N01) and Mn,d (size NΓ x NΓ) with

Md,n
i,j = 2

∑
i,j ∈ I01

Uh,d
0 (Xi)V

h,n
0 (Xj)

ˆ
Γh

01

Φi
0(X)Φj

0(X) dσ

Mn,d
i,j = −

∑
i,j ∈ I0

Uh,n
0 (Xi)V

h,d
0 (Xj)

ˆ
Γh

0

Φi
0(X)Φj

0(X) dσ

−
∑
i,j ∈ I1

Uh,n
1 (Yi)V

h,d
1 (Yj)

ˆ
Γh

1

Φi
1(Y )Φj

1(Y ) dσ

Then the mass matrix M (size (N01 + NΓ) x (N01 + NΓ)) is defined by

M =

[
Md,n 0

0 Mn,d

]
Then to derivate the discretized formulation of (20), we define 4 discrete operators :
A1 (size N01 x N01), A2 (size N01 x NΓ), A3 (size NΓ x N01) and A4 (size NΓ x NΓ) using
respectively the continuous expressions (22), (23), (24) and (25). Setting

A =

[
A1 A2

A3 A4

]
, U =

[
Uh,d

0 (Xi) = Uh,d
1 (Xi) i ∈ I01

Uh,n(Xj) j ∈ IΓ

]
and F =

[
γd0 (uinc)(Xi) = γd1 (uinc)(Xi) i ∈ I01

γn(uinc)(Xj) j ∈ IΓ

]
the discretized formulation of (20) is

Find Uh ∈ X0,d(Γ) such that

(M−A) U = M F
(26)

To be very precise, the mass matrices in the left and the right side are not exactly the same :
Mn,d parts are the same but the Md,n parts are different around the triple points.
Finally, separating real and imaginary parts, the discretized formulation of (20) is

Find Uh ∈ X0,d(Γ) such that(
M−<e(A) =m(A)
−=m(A) M−<e(A)

)(
<e(U)
=m(U)

)
=

(
M <e(F)
M =m(F)

) (27)
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Mesh generation We use GMSH to create the mesh. In Fig.6, Fig.7 and Fig.8 we
represent the mesh with GMSH and MATLAB.

Fig.6 Γ displayed on GMSH

Fig.7 Mesh of Γ ploted on MATLAB, step h = 0.2
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Fig.8 Mesh of ∂Ω0 and ∂Ω1 ploted on MATLAB, step h = 0.2

Test on Γ2 The goal is to assemble just a part of the formulation (26) in order to refind
the formulation (10). So we will ony use A4 and Mn,d : more precisely the restrictions A4|Γ2

(size N2 x N2) of A4 and Mn,d|Γ2 (size N2 x N2) of Mn,d. The equivalent formulation of (10)
using (26), with the notations we used for (10), is

Find q ∈ V+ 1
2

h (Γ2) such that

(−Mn,d|Γ2

2
+ A4|Γ2) Q = −Mn,d|Γ2 Qinc

(28)

In Fig.9 we recall what Γ2 is.

Fig.9 Γ2 displayed on GMSH
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We compute the same Qinc as the one we computed for (10). We show below the results we
have obtained for (28). q is the exact solution of our problem (components qi) ; let us call qh

the approximate solution (components qh
i ). In Fig.10 and Fig.11 we represent the quadratic

errors about real part and imaginary part as functions of the step of the mesh, for two values
of κ (in reality we represent quadratic errors multiplied by h−

1
2 to simulate L2(Γ) errors).

E
rr

or
=

h
−

1 2
.√ ∑

i
|<
e(
q i

)
−
<
e(
qh i

)|2
√ ∑

i
|<
e(
q i

)|2

Step of the mesh h

Fig.10 Error about real part for
two values of κ

E
rr

o
r

=
h
−

1 2
.√ ∑

i
|=
m

(q
i)
−
=
m

(q
h i
)|2

√ ∑
i
|=
m

(q
i)
|2

Step of the mesh h

Fig.11 Error about imaginary part
for two values of κ

In figure Fig.12 we represent the condition number of the matrix associated to (28) as a
function of the step of the mesh, for κ = 2.

C
on

d
it

io
n

n
u

m
b

er

Step of the mesh h

Fig.12 Stable conditioning

The condition number is one more time bounded independently of the step of the mesh.
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Test on Γ1 Let us consider u ∈ H1(∆,Ω1) defined by

u(r) =
H

(1)
0 (κr)

H
(1)
0 (κ)

− J0(κr)

J0(κ)

Let us call U1 = [Ud
1 , U

n
1 ] = γ1(u). Because u is a solution of the Helmotz equation in Ω1 we

have γ1 · G1
κ(U1) = U1. The goal here is to assemble the operator γ1 · G1

κ using parts of the
operators computed for (26) and then test

γ1 ·G1
κ(U1) = U1 (29)

To do that, we only have to keep the parts with 1 (and only 1) in (22), (23), (24) and (25) :
it defines new operators A1, A2, A3 and A4. Then, we take the restrictions A2|Γ01 x Γ1 (size
N01 x N1) of A2, A3|Γ1 x Γ01 (size N1 x N01) of A3 and A4|Γ1 (size N1 x N1) of A4.

Concerning the mass, we have to take one half of Md,n and only the part on Γ1 for Mn,d

and then the restriction Mn,d|Γ1 (size N1 x N1).

Then the operator γ1 ·G1
κ can be discretized by

 Md,n

2 + A1 A2|Γ01 x Γ1

−A3|Γ1 x Γ01 −Mn,d

2 −A4|Γ1


Let us make explicit Ud

1 and Un
1

Ud
1 (r) =

J0(κr)J0(κ) + Y0(κr)Y0(κ)

|H(1)
0 (κ)|2

− J0(κr)

J0(κ)
+ i

Y0(κr)J0(κ)− J0(κr)Y0(κ)

|H(1)
0 (κ)|2

Un
1 (r) =



κ
J1(κ)J0(κ) + Y1(κ)Y0(κ)

|H(1)
0 (κ)|2

− κJ1(κ)

J0(κ)
− i 2

π|H(1)
0 (κ)|2

if r = 1, on Γ21

−κJ1(2κ)J0(κ) + Y1(2κ)Y0(κ)

|H(1)
0 (κ)|2

+ κ
J1(2κ)

J0(κ)
+ iκ

−Y1(2κ)J0(κ) + J1(2κ)Y0(κ)

|H(1)
0 (κ)|2

if r = 2, on Γ01

0 if r = 1, on Γ01

We show below the results we have obtained for (29). F1 (:=MU1) is the exact solution of

our problem (components F i1) ; let us call F h
1 the approximate solution (components F i,h1 ).

In Fig.13 and Fig.14 we represent the quadratic errors about real part and imaginary part
of the Dirichlet part as functions of the step of the mesh, for two values of κ (in reality we

represent quadratic errors multiplied by h
1
2 to simulate L2(Γ) errors).
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E
rr

or
=

h
1 2
.√ ∑

i
|<
e(
F

d
,i

1
)
−
<
e(
F

h
,d
,i

1
)|2

√ ∑
i
|<
e(
F

d
,i

1
)|2

Step of the mesh h

Fig.13 Error about real part of the
Dirichlet part for two values of κ

E
rr

or
=

h
1 2
.√ ∑

i
|=
m

(F
d
,i

1
)
−
=
m

(F
h
,d
,i

1
)|2

√ ∑
i
|=
m

(F
d
,i

1
)|2

Step of the mesh h

Fig.14 Error about imaginary part
of the Dirichlet part for two values
of κ

In Fig.15 and Fig.16 we represent the quadratic errors about real part and imaginary part
of the Neumann part as functions of the step of the mesh, for two values of κ (in reality we

represent quadratic errors multiplied by h−
1
2 to simulate L2(Γ) errors).

E
rr

o
r

=
h
−

1 2
.√ ∑

i
|<
e(
F

n
,i

1
)
−
<
e(
F

h
,n
,i

1
)|2

√ ∑
i
|<
e(
F

n
,i

1
)|2

Step of the mesh h

Fig.15 Error about real part of the
Neumann part for two values of κ

E
rr

or
=

h
−

1 2
.√ ∑

i
|=
m

(F
n
,i

1
)
−
=
m

(F
h
,n
,i

1
)|2

√ ∑
i
|=
m

(F
n
,i

1
)|2

Step of the mesh h

Fig.16 Error about imaginary part
of the Neumann part for two values
of κ
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