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Single trace integral formulations of second kind

for acoustic scattering with metallic domain

Abstract

We study the scattering of acoustic waves by an object composed of several adjacent
parts with different material properties. One of the part is an impenetrable metallic
domain. For this problem we derive an integral formulation of the second kind. This
formulation only involves one Dirichlet datum and one Neumann datum at each point of
each interface of the object.

This document is the result of an internship supervised by Dr X. Claeys in the department
of Mathematics, Computer Science and Control Theory (DMIA) of the University of
Toulouse, ISAE, between March and July 2012.

The simulation of wave propagation in a medium with piecewise constant wave number
has several apllications related to acoustics and electromagnetics. To study this type of prob-
lems, one possible approach is to transform partial derivate equations (PDEs) into boundary
integral equations (BIEs). Most of the literature about BIEs deals with objects composed at
most of two parts with different material properties. However, in practice, the geometrical
configuration implies to study the case with three or more different parts adjacent to each
other : the multiple subdomains scattering.

About multiple subdomains scattering, von Petersdorfl proposed a formumlation of first
kind for scalars problems in [7], extended by Buffa to Maxwell’s equations in [2]. In these
formulations, transmission conditions are taken in account via the choice of variational spaces
and it only involves one Dirichlet datum and one Neumann datum at each point of each
interface of the object. These formulations are called single trace formulations of first kind.
However they aren’t well conditionned and no efficient conditionner has been proposed for
them.

More recently, in [5], Hiptmair and Jerez-Hanckes developped another integral formulation
of first kind for multiple subdomains scattering, with good properties in terms of precondi-
tionning but the preconditionning requires the solution to integral equations local to each
subdomain. They called this formulation multitrace formulation of first kind, as all unknows
of the problem are doubled on each interface.

Claeys proposed first a single trace formulation of second kind in [3] for multiple subdo-
mains scattering. Because it is of second kind, his formulation is intrisically well conditionned.

In this report, we study the scattering of acoustic waves by an object composed of several
adjacent parts with different material properties and one of the part is an impenetrable
metallic domain : we call it multiple subdomains scattering with metallic domain. We propose
a single trace formulation of second kind. This work is the continuity of the work done by
Claeys in [3].

We describe first the problem we consider in Section 1. Then we introduce the adapted
functionnal spaces to study our problem in Section 2. We propose in Section 3 a single
trace formulation of second kind for scattering by one isolated metallic domain and we test
it numerically in 2-D. We delevoppe finally in Section 4 a single trace formulation of second

kind for multiple subdomains scattering with one metallic domain and we test it numerically
in 2-D.



1 Setting of the problem

We consider a partition R% = U?:Jrolﬁi where U?illﬁi is bounded : € is the exterior domain
and 2,41 is the metallic domain. Each €); is a connnected open Lipschitz subset.

We also set @ = R4\ Q,11 (02 = 0,11) and ' = u?jolaszi. Note that there may exist
points where three or more sub-domains would be contiguous, which is precisely the situation
that we wish to tackle. For each i the vector n; refers to the normal vector on 0f2; directed
toward the exterior of €);.

The problem that we study Let uj,. € Hi- (A, Rd) satisfy Auine + Ii% Uine = 0 in R? for

loc
some kg € R. This function plays the role of incident field. In the present report we study

the following problem:

Find u € H(l)’loc(A, ) such that (1)

Au+rlu=0 in Q, i=0...n @
U — Ujpe outgoing radiating in g

where each k; € Ry refers to the wave number inside €2;. In Equation (2), the outgoing

radiation condition refers to the standard Sommerfeld radiation condition, see [4, 6]. It can
be reformulated as

lim |0pu — irkou|?dOQ, =0 with r=|x|. (3)

r—00 aBT

where B, = {x € R?| |x| < r}. Transmission conditions are imposed through Equation (1).
Problem (1)-(2) is a mix of transmission problems for U} ;€; and impenetrable problem for
Q41 (modelised by an homogeneous Dirichlet condition on 9Q = 9, 11).

2 Adapted functionnal spaces

We present here the right spaces for Problem (1)-(2) : the Multi and Single trace spaces.

Multi trace space In order to reformulate Equation (2) as an integral equation posed over
I', a natural functional setting consists in taking cartesian products of trace spaces, namely

H(T) = jlz[o [H%(OQJ) X H_%(OQj)] equipped with the norm

n

1
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It is a Hilbert space. Note that the maximum index is n and not n + 1 ans observe that this
space can be identified to its own dual by means of the following duality pairing

B(U, V) = / u; q; do —/ i U; do

where U = (Uj,pj)ogjgn S H(F) and V = (’Uj,qj‘)ogjgn S H(F)
This bilinear form is non-degenerate: if B(U,V) =0 VV € H(I") then U = 0.



Single trace spaces Now we introduce spaces that seem more adapted to the treatment
of transmission conditions. This setting is inspired by [1]. We set

X+3(I) = { (v:) € T H2 (09) ‘ v € HL,(Q) with vlog, = v;, ¥j =0...n }

(q:) € T H™3 (%) ‘ Jq € H(div, ) with n; - qloo, = qj, ¥j =0...n }

(v, 7)osj<n € HT) | (vy) € XH(T) and (g;) € X5(D) }

(¢:) € H?iol H_%(GQZ-) Jq € H(div, Q) with n;-qlaq; = ¢, Vj=0...n+1 }

XH0) = { () € MG HIO0) | 30 € BL(Q) with vlao, =v;, ¥j =0...n and 155 (0) = vass }
{ (v7,0)o<j<ns1 € H() | (vj) € X¥2(D) and (g;) € X~3(I) }

(v3) € T, H%(GQZ) ‘ Jv e Htl),loc(Q) with v|ga, =v;, Vi=0...n }

Xop(T) = { (v, 4j)o<j<n € H(I) ‘ (v;) € Xgé (I) and (q;) € X~ 2(I) }

To get an intuition of these spaces, observe that in the case where RY = Qg U Q; so that
I' = 0Qy = 9%, there holds X(I') = { (v, q,v, —q) | v € H/3(T), ¢ € H~/2(I) }.

Let us prove a result of duality for Xo(T'). This result is well known for X(T') and X(T).

Proposition 2.1. ) )
Let (u;) € H?:0H+5(89j) and (p;) € II7_(H™2(99;). We have

(i) (uy) € X&%(T) = JZO/(%% ujgjdo =0 V(gj) € X_%(F)
(i) (py) €X (D) = ;)/mj pjvjdo =0 Y(v;) € X;é (I

Proof:

We only present the proof for (i) since the proof for (ii) is very similar.

First assume that (u;) € Xég(F) : Ju € HY,,.(Q) such that u|pg, = uj, j =0...n. Since
I" is bounded, we may assume that supp(u) is bounded, using a cut-off function if necessary :

so we can take u € H}(Q). Let us define & € H(R?) the extension of u on all R? by

i { u in
u e Hl(Qn+1) in Q41 with fb‘aQn_H = u’aQn+1 =0

Then we can define u,41 = ulpq,,, = 0. Consider an arbitary (g;) € X V/2(I') : 3q €
H(div, ©2) such that n; - qlan; = ¢;. We can extend q on all R? as well and the extension § is
defined by

G = { q in Q
q € H(dlv7 Qn+1) in Qn+1 Wlth Np+1 - Q‘aﬂ7l+1 = Nnp+1 - (I’agn+1
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Then we can define ¢,+1 = np+1 - qloa We obtain applying Green’s Formula

n+1"°

n n n+1
Z/ ujgjdo = Z/ ujqjda—i-/ Up41Gn+1do = Z/ ujqjdo
oo =l 00 oo
=0
n+1

:Z/ adiv(§) + Vi - q dx

=074

:/ A div(d) + Vi - § dx = 0
Rd

Now let us consider an arbitrary (u;) € H;L:OHJF%(@Q]) and assume that it satisfies the
condition in the right hand side of (i). For any j = 0...n there exists v; € H(;) such
that vj|a, = uj. Define u € L*(2) by ulo; = v;, and p € L?(Q)* by plo, = Vu;. For any
q € Ho(div, ), setting ¢; = n; - qlaq,, we have

/udiv(q)dx—Z/ v; div(q) dx —Z/ ujqjda—Z/ Vo, - qdx
Q =079 j=0 /0% =07

=0
Q

as (g;) € X_%(F) by definition. Since the preceding identity holds for any

q € Ho(div, ), this proves that « € H'(£2). We have now to prove that u|gq = 0.

Now let us take q € H(div, ) so ngq - qlaa € H*%(GQ) is well defined. And then applying
Green’s Formula and considering the result we have obtained (which is true for q € H(div, §2)
as well)

/ udiv(q) dx= / uloq moq - dlaado — / p-qdx= —/ p-qdx
Q o2 Q Q

which proves that :

/ ulan  naq - dlaado =0, Vq € H(div, Q)
0N =N N——
eH?(00) eH % (00)

so that u|sq = 0 because q € H(div, Q) — naq - qlaq € H_%((‘?Q) is surjective. O

Moreover, one obvious consequence of the preceding proposition is that X (I") can be identi-
fied with its own polar set under the duality pairing B(, ). More precisely : for any U € H(T")
we have

UeXop(l) <= BUV)=0 WV eXqnT) (4)

Let us recall that this is also true for U and V in X(I') and in X(I).



Let us prove now a result of uniqueness in X (I') which is usefull to obtain formulations of
first kind like von Petersdorff obtained in [7]. We won’t use this result because we will only
derivate formulations of second kind but it is a quite interesting result.

The operator C, refers to the operator defined in [3].

Proposition 2.2.
For any F € H(T"), there ezists a unique U € Xop(I") such that

B(C.U,V)=B(F,V) VV eXyp().
Proof:

According to Fredholm alternative, in order to prove the result, we only need to show that
the only U € X (I") satisfying B(C,U,V) =0, VV € Xop(I') is U = 0.
Let us take any U = (U, ..., Un)' € Xop(T) satisfying B(C,U, V) = 0, VV € Xop(I'). Let
us define ¢;(x) = Gy, {U;}(x) so : Uj = [y7] - G, (U;) = v’ (¥5) — 72 ().

First, let us prove that ¢; = 0 in Q; for all j = 0...n. Lets us consider ¢ € L2 (Q)

loc

such that ¢|o, = ¥, and set Wiy = (I1d/2 4+ C,)U. We have Wiy = (7°(¢),...,7"(¢)) and
since B(Win, V) = B((Id/2 + C,)U,V) = B(C.U,V) = 0,VV € Xop(I'), we deduce that
Wint € Xop(I') according to (4), hence ¢ € H}MOC(A, Q). To sum up

NS Htl),loc(Av ) such that

A(p—i—/-i?cp:() inQ;, 7=0...n

 is outgoing radiating in 2.
As a consequence ¢ is solution to an homogeneous transmission problem (that is classically

well posed). Hence ¢ =0i.e. ¢; =0in Q; for all j =0...n.

Now let us show that 1, = 0in Q\ Q; for all j =0...n. Set Wex = —(Id/2 — C,,)U. We
have Wexy = (72(¢00), - .., 72 (¥n)) and B(Wey, V) = —B((1d/2 — C,)U, V) = B(CU,V) =
0,VV € Xop(I") so Wext € Xop(I') according to (4). Clearly

Ay + Ky =0 in Q\Q;, j=0...n
1; is outgoing for j # 0.

Let us consider v = ¥; and q = V(¥;), we have v € H(l),loc(Q) and q € Hjoc(div, Q) since
Wext € Xo,p(I'). We can extend v and q on all R? like we did in Proposition 2.1.
Take r > 0 large enough to ensure that (R?\ Qo) C B, = {x € R?| |x| < r}. Then we have :

/ V52 — 2 fyy i
B\ (2 +1)

= q- Vv +vdiv(q) dx

B\ (2 41)
= / q- Vv +odiv(q) dx — / q- Vv +vdiv(q) dx —/ q- Vv +ovdiv(q) dx
B, Q; Qnt1
= / ¥; 0o — / Y O, do — / V]oQ, 41 Alo941 - Mnt1do
OB, 09 0241
=0



Finally we have :

/ ;0o = / VP K2 P dx o+ / (W) Rc())do VG0
0B, BT\(QjUQnJ,_l) O

J

0 = / o \VZDO\Z—H%WO\deJr/ . (1h0) 8. (¥ )do.
Br\(Q0UQ2y+1) Qo

Take the imaginary part of the identity above, and sum over j = 0...n, taking into account
j j -1/2 . .
that (v9,c(15))o<j<n € X1/2(T) and ((15))o<j<n € Xgp/ *(I) (since Wexi, € Xo,p(I')). This

yields . ’
j; 1 { /a L Vi Ontbydo | = Im{; /a . Yo, 1n.e(By) dor | = 0.

In the last equality above we used Proposition 2.1. Note that, by construction, ¢, is outgoing
radiating with respect to the wave number ;. Combining this condition at infinity with the
identity above for j = 1...n yields

3 /d 0P+ s o
j=1 "

- ; /;Br ‘6rwj - i&j¢j‘2da - ; Im{ /8Br ¥j 87’@3'610'} rjo 0.

This shows in particular that lim,_, [ OB, [9j|?do = 0 for all j = 1...n. As a consequence,

we can apply Rellich Lemma, see Lemma 2.11 in [4], which implies that ¢; = 0in Q\ Q;,j =
1...n. There only remains to deal with v)y5. According to the transmission conditions satisfied

by 1o we have '7876(1#0)': 0 and 4 .(tho) = 0. Hence —tyo(x) = G2 {72(¢0) }(x) = 0 in Q\ Qy.
Since Uj = 7 (¢pj) —42(¢;) =0 forall j =0...n, U =0. O

3 Single trace formulation of second kind for scattering by one
isolated metallic domain

In this section we study the acoustic scattering by one isolated metallic domain so we consider
two domains : the exterior domain €}y and the metallic domain 2.

3.1 Theoretical study

We conisder a partition R? = Qg U Q; where ©; is bounded. We set T' = 9Qy = 9.

The problem that we study Let uj,. € HL (A, R?) satisfy Auine + 52 tine = 0 in RY for

loc

some k € R. This function plays the role of incident field. We study the following problem:
Find u € Hj (A, Q) such that (5)

{ Au+r2u=0 in Q (©)

U — Uijpe outgoing radiating in €2



Adapted functionnal space To derivate the variational formulation we need to introduce
a new trace space. This space is a complementary of X (') in H(I") and we call it Y x(I).
This space is defined by

Yo (') = { (vj, 4j)o<j<n € H(T) ‘ (v;) € X*3() and (q5) € Y&é(F) }

_1
with Y 2(T) = { () € Iy H3 () ‘ Jq € Hy(div, Q) with n; - qlo, = qj, ¥j =0...n }

Variatonal formulation Set Uine = (73(tine); Y (tine)) = (Vines @ine) € X(I') and
U= (v3(u),72(u)) = (v,q) € Xop(T'). Then it is well known that the variational formulation
of (5)-(6) is :

Id
Find U € Xgp(I") such that (5 —Cr)(U = Uipe) =0 (7)
First it is clear that U = (0, q) since u|r = 0 and (Lemma 4.1) G%(7° (wine)) +GL (v (tine)) = 0

wich implies 7' - G2 (Y (tine)) + 1 - GL(Y (ine)) = 0.
Remember thaty! - GL(v!(uine)) = 7' (tine) since v (uine) is a Cauchy data in ; and

’Yg (umc) = Q ’yl(uinc) with
1 0
(o 1)
0

we obtain 10 - G2(1"(tine)) + 1 (tine) = 0.

With 72 - GY = —% + Cr and 72 (tine) = Y (Uine) since ujpe € H%OC(A,]Rd), we obtain
(% - CH)Uinc = Uinc-

The variational formulation (7) can be finally rewritten

Find U = (0,q) € Xop(I') such that

B((d - C)U,V) =B(Upne, V) YV = (w,0) € Yon(I)

wich means
Find ¢ € H_%(F) such that

(8)

d
/(—K)qwdo':/qincw do  Vw e H3(T)
r 2 I

It is clear that (5)-(6) implies (8) : if u is solution of (5)-(6) then ¢ = 7% (u) is solution of (8).

Let us prove the other implication considering q € H > (T") such that

Id -
/( —K)qwdo = / gincw do Yw € H%(F)
r 2 r
and define ¥(x) = SL.{q}(x) Vx € R?\T. Clearly :

—AVU — k20U =0 in

’YJOV,C(‘I/) = —Ginc
¥ outgoing

8



and then we have ¥ = —uj,. in 7 because this problem is well posed so 7%(\11) = —'y% (Uinc)-
Let us define :

1
u = VU +  Uine € Hi,.(A, Q)
€Hl (ARY)  cHL (ARd)

This function is equal to 0 in €1 by cunstruction and we have —Auine — K2uine = 0 in
and —AV — k20U =0 in §y so we finally have :

Au+r2u=0 in

Yp(u) =0 (9)
U — Uipe outgoing radiating in 2
with ¢ = [Y%(9)] = [1¥ (w)] = 7} (w). O

3.2 Numerical experiments

In this paragraph we present numerical results obtained by discretizing formulation (8), in
two dimensions, using a Galerkin method we describe below. In this numerical experiment
we work on a diffraction problem of a plane wave by a circular metallic object. The interest
is that the analytic solution is well known so we can test the code easily. We use GMSH to
generate a mesh of the circle, a C-library of integral equations (developed by Patrick Meury)
to assembly operators and MATLAB to plot results and any usefull information. All the
functions we add are written in C-language. We don’t use any C-library of linear algebra.

Discretized formulation For discretization, we considered a paneling I' = UX_ T% of the

, 1
unit circle where each I'} is a segment. Then we considered the space VZ2 (") with

1 .
V), (1) = {vn € C°() [ wnlp; € Py for T} €T, i=1...N}

1
VZQ (T") is an approximation space for H_%(I‘) and H+%(I‘).

Setting @ = {¢'}i=1..~ and Qine = {¢},.}i=1.. N, the discretized formulation of (8) is

1
Find ¢ € V:Q (') such that

(10)
M -
(E_K)Q:MQinc
where M is the mass matrix of P; functions. Because we use C-language, we need to separate

real and imaginary parts. Then the formulation (10) becomes

1
Find ¢ € VZZ (T') such that

M (i : (1)
(3:0m) )



Mesh generation We use GMSH to create the mesh which modelises the mettalic domain.
In Fig.1 and Fig.2 we represent the circular mesh with GMSH and MATLAB.

N L4

- X-axis
= C0!5] 0 05 1

Fig.1 Unit circle displayed on GMSH

Y-axls

4 i i ] o | |
-1 - -6 04 £2 0 D o4 06 13 1

X-axis
Fig.2 Circular Mesh ploted on Matlab with a step h = 0.2

The C-library of integral equations we use need a specific format of mesh so we have written
a routine which gives this specific format from the .msh file generated by GMSH.
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Assembly To assemble Re(A) and Im(A), we use the C-library of integral equations of
Patrick Meury. Concerning the assembly of the load vector, we study the diffraction of a plave

wave s0 we take Uinc(, 0) = 7Y as an incident field. Using the Jacobi-Anger formula, we
can write winc(r, 0) = "7 80 =3+ inJ (kr)e™ and then
8 Uj
Qinc(rv 0) = Z 'Lﬁn‘]/ HT zn@
n=—oo

On the unit circle, gi,c is only a function of theta. Separating real and imaginary parts we
obtain

+00 Iﬂ?(—l)n
Re {ginc(0)} = Z 9 (J2n+1(“) - J2n71(/€)>COS 2n.0
+ Z b ™ (J2n+2(ﬁ?) — Jzn(/ﬁ)>sin 2n + 1.0
+o0 (_1 n |
{m {Qinc(e)} = Z 5 (JQn_H(KJ) — J2n—1(/€)>SIH 2m.0
* Z el (J2n+2('€) - J2n(/~<:))cos 2n+1.0

Solving of the linear system To solve the linear system (11), we use the mininmum
residual method. We have implemented this algortihm in C-language.

Test To test our code we compare the solution we obtain and the analytical solution which
is given by the derivate q(r,0) of u(r,0) = uinc(r,0) + uqig(r, 0) with

+o0o - +oo H(l)(/ﬂ") ,
Uinc(ra 9) = Z ian(m“)em and udlg(r ¢9 Z Qp———— H(l)( ) et
oy, is chosen to have u(r =1,6) =0, V6, so we finally have
“+oo
n n_In(K) n
u(r, 0) = Z <Z Jn(kr) —1i H(l)( )H(l)( ))e ’
and then
0 u(r,0) = 1/ n In(K) ay in
q(r,0) = = n;mm< — " J (kr) + 1 H?(K)Hnl (m”))e
Using
1y W N I (R)In(K) + YL, (K)Yn(k)
Hy” (kr)  Hy" (kr)Hy' (k) n\v)dn n n i 2 t ]
= = i ror=
Hi (k) [Hy (k)2 [Hy (k) |2 i|H (k)2

and writting ¢(r,0) = ¢*(r,0) + ¢*(r,0) + ¢*(r,0) we obtain

11



+oo
0= 3 ([J 1(8) ~ Tt ()] () (Yoo () — Y (R)] Yo ()

9 2 ( )n+1 '
3 (0) = _Z: w|H<1>( "
+oo n

@0)= Y %(JMl(n)—Jn_l(,@))@mG

+o00 n
Re {q1(9)} = n;oo /@(—21) ‘£2n((H;’2 <[J2n,1(f€) — J2n+1(n)]J2n(,.;))cos .0

A=) Jon(s
+ Z 2 ’H(l)( )|2 <[Y2n*1(’{) - Y2n+1(/€)]Y2n(/i))COs2n.0

B ([JQn(/Q) - J2n+2(/i)]J2n+1(/€)>sin2n + 1.0

2 ([Y2n("€) - Y2n+2(/€)]Y2n+2(/€))Sin 2n + 1.0

00 n o
Sm{d'0)} = ) AL Jan )2([J2n_1(/~z)—Jgnﬂ(ﬁ)pzn(m))smma

W 2 [HR(R)]
= k(=)™ Jon(k
" E2 rH;QI,ién)P (21209 = Yansa (9] Yan ) sin2n
= k(—1 J n K
+n_z_: ( 9 ) ’H(22171+11((/€))|2 <[J2n( ) — Jon+to(K)]Jant1( )>c082n+1 9

21 Ja(e) A1 Ty ()
Re {q*(0)) = sin2n.0 + cos2n + 1.0
o n:Z_OO T [Hy ()2 n_z_oo T [Hya(R)?
+oo +oo
2(—1)" Jan(k) 2(=1)" Jopqa(k)
SIm {0} = cos2n.0 + sin2n + 1.0
D L P DR TR
3 S~ oAD"
Re{d@} = Y 5 (Jgnﬂ(n) - Jgn_l(ﬂ)>cos 21.9

N G Ve |
+ Z <J2n+2(ﬂ) — Jgn(ﬁ))81n 2n+1.0

— 2
R e Vs - .
sm{fO)}= Y =5 (Jznﬂ(m) Jgn_l(li)>sm2n.9
T ey
35 (Jan+2(k) = Jan(r) )cos2n+ 1.0
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Bl

VX Re(gr) — Re(g)

1

Error = h™ 2.

Results In this paragragh we show the results we have obtained with our discretized for-
mulation (11). As above, ¢ is the exact solution of our problem (components ¢;) ; let us call
¢" the approximate solution (components qil) In figures Fig.3 and Fig.4 we represent the
quadratic errors about real part and imaginary part as functions of the step of the mesh, for a
few values of # (in reality we represent quadratic errors multiplied by h™2 to simulate L?(T)
errors).

al
Fa-\
0 ) 10’
5 -
:| & o
1 ' | il e
&7 —~ o ::’
10.4 | & =4 = E = *
e 3 e ¥ E 10 - o . : g
10 ¥ . & . ;
k=8 = ¥ - k=g = "y
- 105 J/r: ¥ o
1’ e ' 2 e /
r ¥ =0
ke ot " > ' i koo ¥ - B
1 k=2 e e o ‘,/'
10+ g | o
k=1 = k=1 =
1 Il 1
1 : 10 ‘ :
0’ 0’ 10' 5 10’ 0’ 1
o
[
Step of the mesh h 5 Step of the mesh h

Fig.3 Error about real part for a Fig.4 Error about imaginary part
few values of k for a few values of k

In figure Fig.5 we represent the condition number of the matrix associated to (11) as a
function of the step of the mesh, for k = 1.

Condition number

BB -g 888 B B 1

10 : O

L L TR |
3 2 -1

10 10 10
Step of the mesh h

Fig.5 Stable conditioning
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We observe that the condition number of this matrix is bounded independently of the step of
the mesh : that is the principal interest of this method. The consequence is that the number
of iterations to solve the linear system is independent of the step of the mesh.

4 Multi potentiel operator and single trace formulation of sec-
ond kind for multiple subdomains scattering (including one
metallic domain)

We study in this section the scattering of acoustic waves by an object composed of several ad-
jacent parts with different material properties and one of the part is an impenetrable metallic
domain. This is the heart of our report.

Let us define a continuous operator A, : H(T') — H(T") by

O(U)(x) = 3 DLL {ui}(x) + SLL {pi}(x) x € RI\T
1=0
and A= (10 @90 ®,.... 00 D40 2)T (12)

for U= (uo,p0,~--,unapn)T

Important here is to note that, in Definition (12), all potentials are considered as functions
defined everywhere except on I.

4.1 General case : one exterior domain (); and n + 1 multiple subdomains

We consider a partition RY = U?jolﬁi where U;‘jllﬁi is bounded and each €; is a connnected
open Lipschitz subset. We also set Q = R%\ Q,, 11 (0Q = 9Q,,1) and T = U?jolaQi.

Q,+1 modelises an impenetrable metallic domain. We only study the case where all wave
numbers are equals, then we have the lemma below.

Lemma 4.1.
Assume that kj = k,¥j = 0...n. In this case, ®(U)(x) = 0 Vx € R? for any U € X(I') and
for any U € X(I).

The problem that we study Let ujn € Hlloc(A7 RY) satisfy Auine + £2 tine = 0 in RY for

some x € R. This function plays the role of incident field. In the present report we study the
following problem:

Find v € H(l)’loc(A, ) such that (13)

Au+r*u=0 in Q;, i=0...n
(14)

U — Ujpe outgoing radiating in g

Let us set Uiy = (’yJ (uinc))ogjgn € X(F) and U = (Uj)OSjgn = (’yj(u))osjgn € X07D(P). It is
clear that if u is solution of (13)-(14) then (Id — A)(U — Ujpe) = 0.
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Let us define F' = (Id — A)Uinc. Then our variational formulation of second kind of (13)-(14)
is :

Find U € Xop(I") such that

(15)
B(Id—-A)U,V)=B(F,V) VV =€ Ygx(I')
So if u is solution of (13)-(14) then U = (v/(u))o<j<n is solution of (15).
Let us prove the other implication considering U € Xo,(I") wich verifies (15) and define
U(x) = ®(U)(x) ¥x € R\ T : ¥ is outgoing and —A¥ — k20 =0 in Q41
Let us prove that ¥ = —uj,. € 2,41 : for that, we need to prove that y"+1( ) —" M (Uipe).
Then we will set ©u = U + ujpe € Hcl),loc(A’ Q) with Auine + K2uine = 0 in =0...n and

AU+ k20 =0inQ; , i =0...n to have :
{ Au+rk2u=0 in ©Q;, i=0...n

U — Uine outgoing radiating in g

Let us consider Uy41 and Vy,41 in H(0$) such that (U, Upy1) € X(T) and (V, Vyipq) € X(I).
Then it is clear that

U(x) = ZG {UH) + G Ui}~ G2 Ui}

wich implies U, 41 = —[7““(‘1’)], and

B(U,V) = Z Bi(Ui, Vi) + Brngy1(Un+1, Vag1) =Bng1 (U1, Vigr)
i=0

=0

So ﬁnally B(Uv V) = Bn+1([7n+1(\p)]a VnJrl)'

Moreover we have AU = (79 - ®(U))o<j<n = (77 - ¥)o<j<n and with the same calculation
B(AU,V) = —Bps1 (41 (9), Viy) 50 B((Id — A)U, V) = By (77 (), Vi),

Now let us develop B((Id — A)Uinc, V). Since (77 (tine))o<j<nt+1 € X(I') we have

n+1

S G (tine) } (%) = 0
=0

and then ®(Up) = —GZ+1{7”+1(umc)} and AUinc = (_’Vj : G:+1{7n+1(uin0)})0§jﬁn =0
because of the caracterisation of the integral representation. Then we have

B((Id — A)Uipe, V) = B(Uine, V) - B(AUi, V)
—— —_—
==Bn4+1 (" (tinc),Va+1) =0

We finally obtain comparing B((Id — A)U, V') and B((Id — A)Uinc, V)
Bn+1(7n+1(\p)> Vat1) = =Bt (7n+1(uin0)a Vat1)s VWi € H(O9)

which implies 4" *1(¥) = —"*!(uy.) because B is non-degenerate. O
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4.2 Toy problem : one exterior domain ¢}y and two subdomains {2; and 2,

We will explicit here our variational formulation (15) with a toy problem.

4.2.1 Theoretical study

We consider a partition R? = QqUQ; Uy where QU5 is bounded and each €2; is a connnected
open Lipschitz subset. €y and £2; have the same physical properties so the boundary between
theses two domains is fictional. 29 modelises an impenetrable metallic domain : we work on
a diffraction problem of a plane wave by a circular metallic object.

We set 2 = RQ\@, g =0, I't =00, s =00, ' =Tgul'yuly, I'yy = T'gN Ty,
Togo=TyNTyand I'i's =11 NTs.

Trace spaces In this case (n + 1 = 2) we have :

( UoE(X)
go(éfg € HE(Ty) x H(T'p) x HE(I'y) x H-3(I'y)
Uo(X) g?]:g ; U}(Y)
U=|." =19 € Xop(I) <=
[Ul(Y)] Upy) ’ UP(X) = UP(X) VX € To
1Y) UP(X) =0 VX €Tg
UP(Y) = 0 VY €T
| 03(¥) = ~03(v) W e Ty
( VoE(X)
v _ [0 i
O L I G A
[Vl(Y)] “?N(? " V¥(X) = VNX) VX €Ty
1Y) V(X)) =0 VX € Loy
VAY) =0 vy eT
Vo) = —vp(v) vy e Ty

The problem that we study Let ujn. € H%OC(A, RY) satisfy Auine + K2 tine = 0 in R for
some x € R. This function plays the role of incident field. In the present report we study the
following problem:

Find u € Hj, (A, Q) such that (18)

Au+r2u=0 in
Au+kK>u=0 in O (19)

U — Uijpe outgoing radiating in €2

16
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We have shown that (18)-(19) is equivalent to

Find U € Xgp(I") such that
B((Id—A)U,V)=B(F,V) YV =€ Ygx(I)
Now we will consider only the case U™ = [Ul(X) = 7 (uinc) ; UP¢(Y) = 0]. Then
. OCuin) — A9 . GO (A0 (4 0(,,.
F = (Id - AU = ['7 (tinc) — 7" - Gy (UmC))] _ [7 (UlnC)]

7"+ GR(Y (ttine)) 7 (tine)
Let us clarify what B(U, V) is :

B Uo| |V
B(U,V) = B< [UJ , |:V1
wich means B(U,V) = faQo U vido — faQo Uy Vg do + fan U vNdo — fBQl Uy VP do

and using (16) and (17) we obtain

} ) = Bo(Uo, Vo) + B1(U1, V1)

B(Uy):z/

To
Let us now clarify what B(AU,V) is :

Uy Vg do — / Uy Vy do — / Uy VP do (21)
85—20 an

0. 0 0.1 S
sy = (1 G TG [0 - X mer e

]

wich means

BAUY) = Y [ ol DL ds + 3 [ ol SLu v de

i,j=0,1 i,j=0,1
- X [ DU ds = 3 [ Al SUw v
ij =01 0% i f=0170%

with

M= > [ ob-DLup Vo= [ 8- DLUYURIGdo+ [ 43 DLUUP) I do
1,7 =0,1 oY Qo %0

[ o DLUUR Vo + [ 4 DU W do
891 891
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and using (16) and (17)

-2/ () DU} VEdo + 2 [ (o} DLV} Vi do (22)
F()l 1—‘01

We also obtain

El= 2 (8) LU VG do + 2 [ (o} SLUUN) Vi do (23)
To1 To1

Bl= - A% DLYUE}VPdo — [ A%-DLLUP}V do
0Qo No

(24)
[ AL DLYURY VP do — / 7L - DLL{UP} VP do
891 891
(=~ RS Vs — [ A% SLUUR VP do
IO IO (25)

[ SLYU VP do — / AL SLYUN VP do
891 an

4.2.2 Numerical experiments

In this paragraph we present numerical results obtained by testing a discretized formulation
of (20) using a Petrov-Galerkin method we describe below.

Qs is the unit disk and €24 is an half annulus centered in the origin of small radius 1 and large
radius 2.

One more time we use GMSH to generate a mesh of the domain’s boundary, a C-library of
integral equations (developed by Patrick Meury) to assembly operators and MATLAB to plot
results and any usefull information. All the functions we add are written in C-language. We
don’t use any C-library of linear algebra.

Discretization For discretization, we considered a paneling I'* = U?I:FII’? of I' where each
I‘Zh is a segment. Let us call Ir = {1,2,3, .. ,Nr} the set of indexes of I'" nodes, size Nr.
We also consider a paneling '} = U?I:Ol F&i of Tg and Iy C Ir (size Np), a paneling T} = U?Lllf‘}ii
of 'y and Iy C Ip (size Ny), a paneling I‘g‘ = U?Ijlf‘g’i of 'y and Iy C I (size N2) and a pan-
eling Il = UNITY, ; of oy and Iy =Ig N1y C I (size Nog).

Let us call Ipg = Ip NIy and Iy = I; N1Ie. Of course we have Ir = [pUl; Uy and Iy; # @
(because T'g1 # ).

1
Then we considered the space VZQ (T'g) with

1 .
V), ? (To) = {vn € C°(To) | vyl € Py for Th, CTH, i =1...No} = span{®}}
" i€lp

1 1
VZQ (T'y) is an approximation space for H_%(Fo) and H‘%(FO). We also define V:Q (T'1) to
approximate Hfé(lﬂl) and H+%(F1).

18



Let us call X&D (I') the approximtion space for Xo p(I').

Uy ™(X) 3, U™ (Xs) h(X)
U] _ U™ (X)| _ -~ |01, Up™ (Xi) @5(X)
[U{I(Y)} Uf’D(Y) Z; 5t U{LD(E) i (Y) 0,0(I")
h =Lt ;
U (y) 5 UM (Vi) @4(Y)
Uy (X)
Uy ™ (X L
U%’D((Yi € Vi3 (o) x Vi (Do) x Vi 2(I) x V()
1
U (Y)
=
U(})LD(XZ) = U{LD(XZ) Vi € 101
Uy (Xi) = 0 Vi € Ty
U (X;) =0 Vi€ I
\ U(})LN(XZ) = _U?N(Xi) Vi € Ip1
Let us call Y§ (T') the approximtion space for Yo x(T')
WREO) [, ) @6
Vh(Xq V0| - [0, Vo () @5(X)
vh—=170 _ 0 _ Ip Y0 i) %0 cyYh (T
[Vlh(Y) V() ; 8 VPP (Y;) ®4(Y) ox(D)
Vi) 8, V(YD) 24(Y)
vy (X)
Vo (X)
V,, 2(Tg) x V, 2(T) x V \Y
‘/1h7D(Y) ( 0) ( O) ( )X ( )
)
=
V() = N(X)  Vieln
V(X)) =0 Vi € Ioy
V1h7N(Xi) =0 Vi € 119
(Xi)

L VP (XG) = —VMP(XG) Vie Ty

Let us define the mass matrix. Using (21) and the definitions of Xy ,(I') and Yo x(I') we have

BUNVY) =2 0ROV (Xdo — [ OB OV de — [ U V) do
Loy 0o o

=2 3 U V(X)) / BH(X)B(X) do

I‘h

]6101 01
h h, i .
-3 W) [ el de - Y UM ) [ smelr)
F} Fh
1,7 €Ip 7€y 1
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Let us define two submatrix M™N (size Ng; x Np1) and M™P (size Np x Np) with

M = 2 30 U0 [ ah0wx) do

i.j €10 To1
, h, h, ; ;
M = = 3D U [ S08x) do
1,5 €1p 0

- 3 Ut [ emelr)de

i:j € Il
Then the mass matrix M (size (No1 + Nr) x (No1 + Nr)) is defined by

MPN
v

Then to derivate the discretized formulation of (20), we define 4 discrete operators :
A1 (size No1 x No1), A2 (size Ng; x Nr), A3 (size N x Ng1) and A4 (size Np x Np) using
respectively the continuous expressions (22), (23), (24) and (25). Setting

A [A1 A2] _ [U(l)l’D(Xi) = U?’D(Xi) (&S I01] and T — [’Y(]i)(uinc>(Xz‘) = 7 (Uine) (Xi)
= s U= Thx ' | AN
As Ay UN(X;) jelr YN (Uine) (

s

the discretized formulation of (20) is

Find U™ € Xo,(I") such that
(26)
M—-—A)U=MF

To be very precise, the mass matrices in the left and the right side are not exactly the same :
MNP parts are the same but the M™N parts are different around the triple points.
Finally, separating real and imaginary parts, the discretized formulation of (20) is

Find U" € Xo (') such that

(o) a5t (3mi) = (sr)
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Mesh generation We use GMSH to create the mesh. In Fig.6, Fig.7 and Fig.8 we
represent the mesh with GMSH and MATLAB.

Fig.6 I' displayed on GMSH
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Fig.7 Mesh of T" ploted on MATLAB, step h = 0.2
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Fig.8 Mesh of 0y and 9y ploted on MATLAB, step h = 0.2

Test on I'y The goal is to assemble just a part of the formulation (26) in order to refind
the formulation (10). So we will ony use A4 and M™P" : more precisely the restrictions A4|r,

(size Ng x Ng) of A4 and M™P|p, (size No x Ng) of M™P.
using (26), with the notations we used for (10), is
. +3
Find ¢ € V, *(I'2) such that

(_MN,D|F2
2

+ Adlr,) Q = —M™P|p

In Fig.9 we recall what I's is.

The equivalent formulation of (10)

2 Qinc

| x-axis

=<
>

Fig.9 I's displayed on GMSH
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)2

h
i

Vs Re(g) — Relg]

FError = h™ 2.

We compute the same Qinc as the one we computed for (10). We show below the results we
have obtained for (28). ¢ is the exact solution of our problem (components ¢;) ; let us call ¢"
the approximate solution (components qf) In Fig.10 and Fig.11 we represent the quadratic
errors about real part and imaginary part as functions of the stlep of the mesh, for two values
of x (in reality we represent quadratic errors multiplied by h™2 to simulate L?(T) errors).

.
S
=
S
& &
o - - | »
- - g A
k=1 " - ] E e /; =
T & ot
-3 - E el . Lj _ B I'/::/j:'. -
10 k=5 = = K=s o
v—dc\l' k=1
o
4 Il 3
10 3 2 -1 — 10 3 2 .
10 10 10 S 10 10 10
Step of the mesh h ) Step of the mesh h
Fig.10 Error about real part for Fig.11 Error about imaginary part
two values of k for two values of x

In figure Fig.12 we represent the condition number of the matrix associated to (28) as a
function of the step of the mesh, for k = 2.

10°

10 ¢ 3

10°; 1

10°; 1

Condition number

10 ¢ -l W —————————— —

10°- L )
10 10 10

Step of the mesh h

Fig.12 Stable conditioning

The condition number is one more time bounded independently of the step of the mesh.
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Test on I';  Let us consider u € HY(A, Q1) defined by

u(r) = H(Ol)(/ﬂ") ~ Jo(kr)
Hgl)(/{) Jo(k)

Let us call Uy = [UP, U] = v!(u). Because u is a solution of the Helmotz equation in Q1 we
have v' - GL(U;) = U;. The goal here is to assemble the operator 7' - GL using parts of the
operators computed for (26) and then test

Y GL) =Th (29)

To do that, we only have to keep the parts with 1 (and only 1) in (22), (23), (24) and (25) :
it defines new operators Al, A2, A3 and A4. Then, we take the restrictions A2|r,, x 1, (size
N01 X Nl) of A2, A3‘F1 x To1 (size N1 X NOI) of A3 and A4‘F1 (size N1 X Nl) of A4.

Concerning the mass, we have to take one half of MPY and only the part on I'; for M™P
and then the restriction M™P|p, (size Nj x Ny).

Then the operator v! - GL can be discretized by

M2’ + Al A2h“01 x T

—A3lr, ko, M3 — Ad|p,

Let us make explicit Uy and U}

Jo(kr)Jo(k) + Yo(kr)Yo(k)  Jo(kr) n Z,Yo(m")Jo(/{) — Jo(kr)Yo(k)

Up(r) =
1 D () 2 Jo(r) Y () 2
/{Jl(H)JO(H)j—YI(R)YO(@ — mJl(K) —1 12 if m=1, onTy
H ()2 Jo(k) r|H{Y (w)2
o ~
UN(r) = _%J1<2H)J0(H)1+YI(QH)YO(H) N L J1(2) tin Y1(2H)J0(H1) +J12R)Yo(k) o 9. on oy
H® ()2 Jo(x) HY (r)[2

0if r=1,onl'yn

We show below the results we have obtained for (29). F; (:=MU;) is the exact solution of
our problem (components F}) ; let us call F} the approximate solution (components Fllh)
In Fig.13 and Fig.14 we represent the quadratic errors about real part and imaginary part
of the Dirichlet part as functions of the step of the mesh, for two values of £ (in reality we

represent quadratic errors multiplied by h? to simulate L2 (T") errors).

24



h,D,i),Z

1

) — Re(F

D
1

F

VI e

1

FError = hz.

h7 7‘
el

) — Re(F

N
1

F

Vs e

FError = h™2.

?II
e
e 3
)
5 /‘/ 4
10 - s g
- m
- P
k=1 o
5| =
10 /.,,
-
k=5 =
7
10
-3 -2
10 10 10

Step of the mesh h

Fig.13 Error about real part of the
Dirichlet part for two values of k

a
<
S
s |Is
&? QL;
| ~—
—~1 £
2
T [
o =
N
=
e
1
[
o
g
65|

)

In Fig.15 and Fig.16 we represent the quadratic errors about real part and imaginary part
of the Neumann part as functions of the step of the mesh, for two values of x (in reality we

represent quadratic errors multiplied by h~3 to simulate L%(T) errors).
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Fig.15 Error about real part of the
Neumann part for two values of k
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