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Introduction

Numerical shape optimization in aerodynamics is a design process of geometric shapes
following a given criteria of aerodynamic performance with both geometric and aerodynamic
constraints. There are various methods for shape optimization, including global and local
optimization algorithms.

The global optimization algorithms need huge amounts of computational resources since
their cost depend exponentially on the number of design variables so they are restricted to
a very small number of design variables. Genetic algorithms [32], artificial networks [29] and
response surface methods [1] have been used for shape optimization in aerodynamics.

The local algorithms are used for large number of design variables in order to generate
sophisticated industrial configurations. Given this large number of variables, classical methods
used to compute the gradient of the objective function with respect to design variables (e.g.
finite differences, complex variables or linearized methods) are obviously inefficient because
they compute the gradient at a cost proportional to the number of design variables. The
adjoint method does not have this drawback since it offers a way to calculate the derivatives
of an objective function with respect to design variables with low time cost independent of
the number of design variables.

The adjoint method was first introduced into fluid mechanics by Pironneau [30] and its
first application in aerodynamic design was pioneered by Jameson [19]. Reuther et al. [33]
published a few papers about the adjoint method, from drag minimization for transonic flows
to noise reduction for supersonic flows. There are two variations of the adjoint method :
the continuous adjoint method and the discrete adjoint method. In the continuous adjoint
method, the nonlinear flow equations are linearized first with respect to design variables and
then an adjoint system is derived from the linearized flow equations, followed by discretiza-
tion. In the discrete adjoint method, the flow equations are discretized first, followed by the
linearization and the adjoint formulation. Details about advantages and drawbacks of these
two methods can be found in [25].

In recent years, shape optimization with adjoint method has been widely used in turbo-
machinery. Wu et al. [46] developed a continuous adjoint solvers for two-dimensional and
three-dimensional blade design. Wang et al. [44] successfully employed adjoint aerodynamic
optimization design to blades in multistage turbomachinery.
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This master thesis focuses on the redesign of the well known two-dimensional LS89 dis-
tributor turbine blade of the Von Karman Institute using the discrete adjoint method. The
entropy generation rate is considered as the objective function in the design process. The
principal interest of this work is the multipoint optimization : a multipoint formulation is
presented in order to minimize the entropy generation rate not only a given condition of the
turbine characteristic but all over a nominal range around this condition. The turbine blade is
parametrized by non-uniform B-splines through a CAD parametrization tool. The mesh is de-
formed thanks to a mesh deformation module. The flow is modeled by the Reynolds-averaged
Navier-Stokes equations with Spalart-Allmaras turbulence model.

Chapter 1 presents the theoretical aspects of the shape optimization. The optimization
problem is set and the different modules of the design process presented. Chapter 2 presents
the results of single-point and multipoint optimizations performed on the LS89 blade.
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Chapter 1

Shape optimization in aerodynamics

Let us begin with the theoretical aspects of the shape optimization.

1.1 Setting of the problem

A shape is described by a few parameters called design variables. Theses variables generate
a surface grid and a volume grid built from and around this surface.

1.1.1 Mathematical setting and notations

The notations used for the optimization problem are as follows.

Symbol Meaning Comments

α Vector of design variables.

nα Size of α. For our 2D applications, nα ∼ 10.

Dα Domain of definition of α. Bounded.

S(α) Vector of coordinates of the surface grid. Supposed to be a C1 function of α.

nS Size of S(α). For our applications, nS ∼ 102.

X (α) Vector of coordinates of the volume grid. Supposed to be a C1 function of α.

nX Size of X (α). For our applications, nX ∼ 105.

W Vector of flow variables.

nW Size of W . nW ≈ 5nX .

F (α) Objective function. Nonlinear.

Table 1.1: Notations used for the optimization problem.

The aerodynamic flow around the shape is calculated thanks to the Navier-Stokes equations.
We write these equations as :

R(W ,X ) = 0. (1.1)
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The function R is called the explicit numerical residual (see section 1.3) and is supposed to
be a C1 function from RnW ×RnX to RnW . The system (1.1) is a set of nW nonlinear equations
with nW unknowns. Let us set W to W 0, α to α0 and so then X to X 0 = X (α0). Under
the assumption of the implicit function theorem :

det
[ ∂R
∂W

(W 0,X 0)
]
6= 0 and R : RnW × RnX → RnW C1, (1.2)

the equation (1.1) defines the flow W as a function of the grid X around X 0 and, because
X is a C1 function of α, it defines W as a function of α around α0. From now, we assume
that (1.2) is always true. (1.1) can be finally rewritten :

R(W (α),X (α)) = 0. (1.3)

The objective function F can be also rewritten F (α) = F (W (α),X (α)) and is supposed
to be a C1 function of W and X . In aerodynamics it can be the drag, the isentropic ratio
or, four our applications, the entropy generation rate we will define later. Our optimization
problem is then :

Minimize F (W (α),X (α)),
with respect to α,
subject to α ∈ Dα.

(1.4)

The problem (1.4) is an optimization problem with bounds on the variables. We use in this
thesis the L-BFGS-B algorithm (see section 1.5). This algorithm requires the gradient of
the function F with respect to design variables but does not require the second derivatives :
the Hessian matrix is approximated using rank-one updates specified by gradient evaluations.
The gradients are calculated with the discrete adjoint method (see section 1.6).
More generally, the objective function F can depend on physical parameters as the incidence
angle, the Mach number or, for our applications, a pressure ratio. The problem (1.4) is then a
single-point design problem : the objective function is minimized at a given physical condition.
For our applications, we will minimize the entropy generation rate at given pressure ratio Π.
We can then write not only F (α) but F (α,Π) and (1.4) becomes then :

Minimize F (W (α),X (α),Π),
for Π = Πk given,
with respect to α,
subject to α ∈ Dα.

(1.5)

We will present examples of such problems (1.5) in the second chapter. But what designers
are expected is to minimize F over a continuous interval IΠ of conditions. This is called the
multipoint optimization and this is the purpose of the next section.
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1.1.2 Multipoint optimization

The multipoint optimization is more and more used for the design of aircraft [21]. We will
present here only the general aspects and apply it to the design of a turbine blade.
The first step is to identify a discrete set of operating conditions (Πk)k∈[[1 ;nΠ]] and minimize
the function F over this set, hoping that minimizing over this discrete set will minimize the
function all over the continuous interval. The question is then : how to choose this set of
operating conditions ? Li et al. [23] have shown that if the design variables vector α is of
size nα then, for a uniform sampling of IΠ, necessarily nΠ > nα + 1. Gallard et al. [15, 16]
noticed that this is actually the worst case and in general nΠ � nα. They have developed an
algorithm called GSA (Gradient Span Analysis) which selects from a uniform sampling of IΠ

of large size NΠ a new sampling of IΠ of lower size nΠ. It is based on modified Gram-Schmidt
processes which build a basis of size nΠ of the following set :

Kα, NΠ
= Span

[
∇αF (α,Πk)

]
k∈[[1 ;NΠ]]

. (1.6)

We use this algorithm in this thesis so let us assume that the minimal set of operating
conditions (Πk)k∈[[1 ;nΠ]] has been founded thanks to the algorithm GSA and let us define a
new function F̃ by :

F̃ (α) =
nΠ∑
k=1

ωk F (α,Πk), (1.7)

with weights (ωk)k∈[[1 ;nΠ]] ∈ RnΠ . We will use two different type of weights in this thesis
and will present them with our results in the second chapter. The multipoint optimization
problem is finally :

Minimize F̃ (W (α),X (α)),
with respect to α,
subject to α ∈ Dα.

(1.8)

1.1.3 Optimization process

We have worked with the AIRBUS optimization chain. That is a gradient-based approach
using the discrete adjoint state of the Navier-Stokes equations (1.1) within a numerical design
optimization suite. The overall optimization process depends on five dedicated modules. The
parametrization module Padge generates the shape via CAD parametrization, using the
current design variables. The volume mesh deformation VolDef updates the mesh thanks to
the Improved Integral Method (IIM). The flow and the adjoint state are computed with the
industrial CFD solver elsA. The post-processing tool Zapp computes the objective function.
The optimization software Dace drives the optimization process. The tabular below gives
the inputs and outputs of each module.
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Module Inputs Comments Outputs

Padge α Calculation of the surface deformation δS(α). S(α), δS(α)

VolDef δS(α) Calculation of the volume deformation δX(α). X (α)

elsA X (α) Resolution of R(W (α),X (α)) = 0. W (α),
∂R

∂W
,
∂R

∂X

Zapp W (α) F,
∂F

∂W
,
∂F

∂X

adjoint elsA
∂F

∂W
,
∂F

∂X
,
∂R

∂W
,
∂R

∂X
Resolution of

( ∂R
∂W

)T
λ = −

( ∂F
∂W

)T
.

dF

dX
=
∂F

∂X
+ λT ∂R

∂X

adjoint VolDef
dF

dX
Calculation of

dX

dS
.

dF

dS
=
dF

dX

dX

dS

adjoint Padge
dF

dS
Calculation of

dS

dα
.

dF

dα
=
dF

dS

dS

dα

Table 1.2: Inputs and outputs of the different modules of the optimization process.

∂F

∂W
,
∂F

∂X
,
dF

dX
,
dF

dS
and

dF

dS
are vectors.

∂R

∂W
,
∂R

∂X
,
dX

dS
and

dS

dα
are matrices.

We present in the next sections the theoretical aspects behind the modules Padge , elsA
and VolDef .

1.2 Parametrization of geometric objects

The way to parametrize the shape to optimize (a two-dimensional surface of R3, typically
a wing or a blade) is of course a very important aspect of the design-optimization system :
the parametrization is given through the vector α called as the vector of design variables, or
simply design variables. Jameson, pioneer in the area of shape optimization in aerodynamics
[19], first used as design variables directly the points coordinates of the shape. It is very easy
to implement but it gives huge sizes for α : if the mesh of the shape is made of nS points
then nα = 3× nS . Moreover with this method there is nothing which provides the surface to
be smooth (for us the minimum acceptable regularity is a C2 regularity to make possible the
manufacturing of the wing or the blade) so it is necessary to use a smoother.
We will present here four types of parametrization historically used in aerodynamics, the
fourth one is the one we used for this thesis.

1.2.1 PARSEC airfoil geometry

The PARSEC airfoil geometry has been introduced by Sobieczky [39] and is defined by 11
parameters. Theses parameters engender a section of a wing or a blade (so a one-dimensional
curve) and have been chosen because they have a big influence on airfoils aerodynamic per-
formance : e.g. leading edge radius, upper and lower crest location including curvature there,
trailing edge coordinate and thickness. The Figure 1.1 shows these parameters.
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Figure 1.1: The 11 parameters of the PARSEC airfoil geometry.

Main advantages : This method reduces a lot the number of design variables and the PAR-
SEC parameters have a direct physical sense for the designers.

Main drawbacks : The C2 regularity is not guaranteed and it cannot create localised
deformations.

1.2.2 Free-form deformation

The free-form deformation was first described by Soderberg and Parry [40]. The idea is to
enclose the wing or the blade (complex geometry) within a cube (basic geometry) and to
define then the deformations of the wing via the deformations of the cube. The points of
the wing are related to the cube points thanks to the Bernstein polynomials and the design
variables α are then the coordinates of the cube points. This parametrization has been used
by Samareh [37] and Desideri and Janka [13] for shape optimization in aerodynamics.

Main advantages : With the free-form deformation it is very easy to deform two-dimensional
surfaces (even if their geometry is complex), it provides smoothness and it reduces a lot the
number of design variables.

Main drawbacks : It is relatively difficult to create low and localized deformations and
the parameters don’t have a physical sense for the designers.

1.2.3 Hicks-Henne functions

Hicks and Henne have proposed a parametrization for wing or blade sections by adding
to an initial configuration linear combinations of localized deformations called Hicks-Henne
functions. These functions are defined along the normalized curvilinear abscissa of the blade
and depend on two parameters A and B :

HH(x) = [sin(πx
ln 0.5
lnA )]B, ∀x ∈ [0 , 1], ∀A ∈]0 , 1[, ∀B ∈ [2 , 10]. (1.9)

The figure 1.2 shows the influence of the parameters A and B.
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Figure 1.2: Hicks-Henne functions : influence of parameters A and B.

They can be generalized in two dimensions to deform not only a section of the wing but
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the wing itself. They have been used by Laurenceau [22] and Reuther et al. [33] for shape
optimization in aerodynamics.

Main advantages : It reduces a lot the number of design variables, it provides smooth
surfaces and it creates localized deformations.

Main drawbacks : The parameters don’t have a physical sense for the designers and it
cannot deform the leading edge radius (the derivative of Hicks-Henne functions is equal to
zero for x = 0).

1.2.4 CAD parametrization

The CAD (Computer-Aided Design) parametrization is the solution chosen for the optimiza-
tion process we have used. It is based on the NURBS (Non-Uniform Rational Basis Splines)
surfaces and on a PARSEC-like parametrization.
Mathematically the shape S is a parametric surface S(u, v) with (u, v) ∈ [0, 1]2, driven by
(m+ 1)× (n+ 1) control points P i,j with weights ωi,j , and defined by :

S(u, v) =

m∑
i=0

n∑
j=0

Ni,p(u)Nj,q(v)ωi,j P i,j

m∑
i=0

n∑
j=0

Ni,p(u)Nj,q(v)ωi,j

, ∀(u, v) ∈ [0, 1]2. (1.10)

where the Nk,r are the B-spline basis functions.
In practice, we only manipulate concrete parameters like the ones used for the PARSEC
parametrization (e.g. thickness, curvature, leading edge radius) and the CAD parametriza-
tion tool generates a surface from these parameters. The design variables α are therefore not
the coordinates of control points P i,j and weights ωi,j but are concrete design parameters.
The CAD parametrization has all the advantages we were looking for : it reduces a lot the
number of design variables, it provides smooth surfaces and creates localized deformations,
and the designers stay in a known design environment.

The parametrization module Padge also provides the surface deformation field δS differ-
entiating (1.10).

1.3 Mesh deformation

Within the optimization process, the volume grid X has to be updated because of the surface
deformations δS. Two kinds of method exist to update the mesh : automatic mesh generation
and mesh deformation.
The automatic mesh generation allows important changes in the shape by generating - if it is
necessary - a new topology. But this method is not always differentiable which makes it not
well adapted to gradient-based approaches (a gradient-based need the mesh sensitivity with
respect to the surface dX /dS , see Table 1.2).
The mesh deformation uses the surface deformations in order to generate a new volume
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mesh maintaining the same topology. The module VolDef uses a distance-based algebraic
model called the Improved Integral Method. From a surface deformation field δS, a volume
deformation field δX is generated. More precisely, the volume deformation field δX(M ) at
a given point M depends on the surface deformations δS(P) of the points P (with normals
nP ) of the surface S via the formula :

δX(M ) =

ˆ
P∈S

( 1
ca(M ,P) ||PM ||

)α
δS(P) dS

ˆ
P∈S

( 1
ca(M ,P) ||PM ||

)α
dS

,

with ca(M ,P) = exp
(3

2

(
1− nPPM

||PM ||

)2)
.

(1.11)

The formula (1.11) is then differentiated to provide the mesh sensitivity with respect to the
surface dX /dS .

1.4 Numerical resolution of flow equations

The third step of the optimization process is the simulation of the aerodynamic flow via the
resolution of (1.1). Once the shape is defined (section 1.2) and the mesh deformed (section
1.3), it is necessary to calculate the aerodynamic flow around the new blade in order to
evaluate the new value of the objective function. We use in this work the industrial CFD
solver elsA developed by the French aerospace agency ONERA and CERFACS [9, 10, 31].

1.4.1 Navier-Stokes equations

The turbulent aerodynamic flow of a viscous, Newtonian and compressible fluid is governed by
the Navier-Stokes equations. These equations are a non-linear system of five PDEs introduced
by Navier and Stokes in the 19h century. They are obtained via physical conservation laws
of the five unknowns : the density ρ, the momentum ρU = [ρu, ρv, ρw]T and the total energy
ρE of the fluid. ρ = ρ(X , t), ρU = (ρU )(X , t) and ρE = (ρE)(X , t) are functions of the
time t ∈ [0, T ] and the space X ∈ Ω with a bounded domain Ω of R3.

Conservation laws



∂ρ

∂t
+ ∇ · (ρU) = 0,

∂ρU

∂t
+ ∇ · (ρU⊗U + pI − τ ) = 0,

∂ρE

∂t
+ ∇ · (ρEU + pU− τ U + q) = 0,

(1.12)

with initial conditions ρ(X , 0) = ρ0(X ), (ρU )(X , 0) = (ρU )0(X ), (ρE)(X , 0) = (ρE)0(X ),
for all X in Ω.
Different sorts of boundary conditions can be associated to the system (1.12) and are available
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in elsA. For our applications, the boundary ∂Ω of the domain Ω is divided into five parts
and we set ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 ∪ ∂Ωb. We use the injection condition inj1 for
the inlet boundary ∂Ω1, the constant pressure condition outpres for the outlet boundary
∂Ω2, a periodic condition periodic for the lower and upper boundaries ∂Ω3 and ∂Ω4, and the
adiabatic wall condition adiawall for the blade wall ∂Ωb. We give the explicit formulation of
theses conditions in the paragraph Boundary conditions below.

State laws

In the system (1.12), the static pressure p has to be defined as a function of the five unknowns
ρ, ρU and ρE. Let us recall first that the total energy ρE is the sum of the intern energy
ρe and the kinetic energy 1/2ρU 2 which defines the intern energy ρe as a function of ρ, ρU
and ρE :

ρe = ρE − 1
2

(ρU )2

ρ
. (1.13)

In the CFD solver elsA, the fluid is a perfect gas (i) with constant specific heat coefficients (ii)
cP and cV . Let us note γ = cP /cV . For the air, γ = 1.4, cP = γr/(γ − 1) and cV = r/(γ − 1)
with r = 287.053 USI. (ii) leads to :

e = cV T, (1.14)

with T the the static temperature of the fluid. Using (1.13), T is then defined as a function
of ρ, ρU and ρE :

T =
(γ − 1)
r

1
ρ

[
ρE − 1

2
(ρU )2

ρ

]
. (1.15)

(i) leads to p = rρT and using (1.15), p is then defined as a function of ρ, ρU and ρE :

p = (γ − 1)
[
ρE − 1

2
(ρU )2

ρ

]
. (1.16)

Empirical laws

In the system (1.12), the stress tensor τ and the heat flux vector q have to be modeled.
For a Newtonian fluid, τ is given by the law :

τ = λ(∇ ·U )I + µ
[
∇U + ∇U T

]
, (1.17)

with (λ, µ) ∈ R∗×R∗ the two coefficients of viscosity of the fluid. Classically, using the Stokes
hypothesis, λ = −2/3µ. The coefficient µ is calculated with the Sutherland law :

µ(T ) =
βs
√
T

1 + Cs/T
. (1.18)

For the air, βs = 1.457.10−6 USI and Cs = 110.4 USI. The heat flux vector is modeled through
the Fourier law :

q = −kT (T )∇T. (1.19)

We introduce then the Prandtl number Pr = cPµ/kT . For our applications, Pr = 0.72 which
gives kT (T ) = cPµ(T )/0.72.
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Aerodynamic Relations

We give here a list of variables used for the description of flows. Let us note U the norm of
the velocity vector U and let us consider a reference state with index ref .

Mach number M =
U

a

Reynolds number Re =
ρrefUrefLref

µref

enthalpy h = e+
p

ρ

total enthalpy H = E +
p

ρ

total pressure pt = p (1 +
γ − 1

2
M2)

γ
γ−1

total temperature Tt = T (1 +
γ − 1

2
M2)

pressure coefficient Cp =
p− pref

1/2ρrefU2
ref

dynamic viscosity ν =
µ

ρ

Boundary conditions

As we said in the paragraph Conservation laws, we use the injection condition inj1 for the
inlet boundary ∂Ω1, the constant pressure condition outpres for the outlet boundary ∂Ω2,
the periodic condition periodic for the lower and upper boundaries ∂Ω3 and ∂Ω4, and the
adiabatic wall condition adiawall for the blade wall ∂Ωb.

Injection condition

For an inlet boundary of a two-dimensional subsonic flow, three conditions have to be given.
Let us note U = Ud with d a unit vector. The injection condition requires the direction of
the flow d , the total pressure pt and the total temperature Tt.


d(X , t) = d1 , ∀X ∈ ∂Ω1, ∀t ∈ [0, T ],

pt(X , t) = pt1 , ∀X ∈ ∂Ω1, ∀t ∈ [0, T ],

Tt(X , t) = Tt1 , ∀X ∈ ∂Ω1, ∀t ∈ [0, T ],
(1.20)

where d1 is a given unit vector and pt1 and Tt1 two given constants.
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Constant pressure condition

For a subsonic flow, there is only one condition to be imposed on the outlet boundary. We
use here a constant pressure condition :

p(X , t) = p2 , ∀X ∈ ∂Ω2, ∀t ∈ [0, T ], (1.21)

where p2 is a given constant.

Periodic condition

We use a condition of periodicity between the upper and lower boundaries : the fluxes which
comes through the lower boundary ∂Ω3 are reinjected through the upper boundary ∂Ω4 and
vice versa. The variables [ρ, ρU T, ρE]T and the fluxes are equal on ∂Ω3 and ∂Ω4.

Adiabatic wall condition

The blade wall ∂Ωb is supposed to be adiabatic which means there is not any heat trans-
fer between the flow and the blade. This can be written as :

∇ p(X , t) = 0 , ∀X ∈ ∂Ωb, ∀t ∈ [0, T ],

U (X , t) = 0 , ∀X ∈ ∂Ωb, ∀t ∈ [0, T ],

q(X , t) = 0 , ∀X ∈ ∂Ωb, ∀t ∈ [0, T ].

(1.22)

1.4.2 Modeling of the turbulence : RANS equations

The nonlinear part ∇ · (ρU ⊗U ) of the convective flux in the Navier-Stokes equations (1.12)
is responsible of the turbulence. When the Reynolds number of the flow is low, the diffusive
flux −∇ · τ is high enough compared to the convective flux to cancel the non-linearities :
the flow is laminar. But from a certain Reynolds number (the laminar-turbulent transition
is a whole subject and we do not discuss about this here), the convective flux becomes so
high that it is the most dominant effect : the flow is turbulent. Turbulent flows appear as
an instability of laminar flows. They involve activity over a continuous spectrum of length
and time scales, are random in appearance, chaotic, irregular with a high sensibility to the
details of boundary and initial conditions. They are three-dimensional, unsteady and have
a rotational and dissipative nature. To calculate all the length scales, the required number
of points of the grid (obtained via discretization of the domain Ω, see subsection 1.3.3) is
huge. For three-dimensional flows, this number N3D is proportional to Re 9/4 where Re is
the Reynolds number. For our applications, Re = 264170 which yields N3D ∼ 1012. The
turbulence is therefore not calculated but modeled via a statistically approach.

Reynolds and Favre averages

A turbulent flow can be described statistically. Reynolds [34] introduced the so-called Reynolds-
averaged Navier-Stokes (RANS) equations using a decomposition of a field g(X , t) (scalar or
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vector) in a mean part g(X , t) and a fluctuation part g′(X , t) :

g(X , t) = g(X , t) + g′(X , t),

with g(X , t) = lim
n→∞

1
n

n∑
k=1

gk(X , t) and g′ = 0. (1.23)

This is an average over the realizations gk of the field. In our applications, we only consider
steady turbulent flows which means that the statistical average g does not depend on the
time. In this case, statistical and time averages can be identified (ergodicity hypothesis, [12])
and g can be defined as :

g(X , t) =
1
T

ˆ t0+T

t0

g(X , t) dt, (1.24)

where T is greater than the characteristic period of the fluctuations g′. The Reynolds average
is actually only used for incompressible flows. For compressible flows, the Favre average is
preferred. The Favre average of a field g(X , t) is :

g̃(X , t) =
ρ(X , t)g(X , t)

ρ(X , t)
, (1.25)

where ρg and ρ are Reynolds averages. The field g can then be decomposed as :

g(X , t) = g̃(X , t) + g′′(X , t),

with ρg′′ = 0 but g′′ 6= 0.
(1.26)

Reynolds-averaged Navier-Stokes equations

Using the Favre average (1.26) for the Navier-Stokes equations (1.12), we get the RANS
equations (for the details of the calculation, see [4]) :



∂ρ

∂t
+ ∇ · (ρU ) = 0,

∂ρU

∂t
+ ∇ · (ρU ⊗U + pI − τ − τt) = 0,

∂ρ(E + k)
∂t

+ ∇ · (ρ(E + k)U + pU − (τ + τt)U + q + qt) = 0,

(1.27)

with initial conditions ρ(X , 0) = ρ0(X ), (ρU )(X , 0) = (ρU )0(X ), (ρE)(X , 0) = (ρE)0(X ),
for all X in Ω. To simplify the equations (1.27) and the initial conditions, the mean flow
variables don’t have been overlined : ρ and p are Reynolds-averaged, U and E are Favre-
averaged. The stress tensor τ and the heat flux vector q have the same expressions as
equations (1.17) and (1.19), replacing U and T by Ũ and T̃ . Finally, there are only three
new contributions : the Reynolds stress tensor τt = −ρU ′′ ⊗U ′′, the turbulent kinetic energy

k = 1/2ρU ′′2/ρ and the turbulent heat flux vector qt = cP ρT ′′U
′′.
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Boussinesq’s hypothesis

To close the system (1.27), the turbulence has to be modeled through the modeling of τt, k
and qt. Boussinesq introduced in 1877 the concept of turbulent viscosity µt. He modeled the
effect of the turbulence on the mean flow as an augmentation of the viscosity and defined the
Reynolds stress tensor τt and the turbulent heat flux vector qt as :

τt = −2
3

(ρk + µt∇ ·U )I + µt

[
∇U + ∇U T

]
,

qt = −cPµt
Prt

∇T .
(1.28)

Prt is the turbulent Prandtl number, constant and equal to 0.9 for our applications.
The Boussinesq’s hypothesis simplifies the modeling of the turbulence, reducing the number
of unknowns to two : k and µt.

Turbulence model

It exists a lot of different models to calculate k and µt. These models can be either algebraical
models or models using one or two convection equations. Balwin-Lomax [3] and Michel
[24] models are algebraical models, the k − ε model of Jones-Launder [20] and the k − ω
model of Wilcox [45] are 2-equation models. We use in this thesis the 1-equation Spalart-
Allmaras model [41]. This model uses a convection equation for the modified turbulent
dynamic viscosity ν̃t, proportional to the turbulent dynamic viscosity νt far from the wall.
The turbulent kinetic energy k is not modeled : for flows having a moderate level of turbulence,
k can be neglected using a well chosen normalization. The effect of the turbulence is therefore
only modeled through the turbulent viscosity µt.

Initial and boundary conditions

The boundary conditions are the same for the boundaries ∂Ω1, ∂Ω2, ∂Ω3 and ∂Ω4, and ∂Ωb :
injection, constant pressure, periodic and adiabatic conditions respectively. Initial conditions
of [ρ, ρU T, ρE]T are also given. There is an initial condition of µt and boundary conditions :
fixed values on ∂Ω1 and ∂Ω2, periodic condition between ∂Ω3 and ∂Ω4, and equal to 0 on
∂Ωb.

1.4.3 Discretization of the RANS equations with the Finite Volume Method

The elsA software uses the Finite Volume Method (FVM) for the discretization of the RANS
equations (1.27). The three-dimensional domain Ω is a multi-block mesh with structured
blocks divided into hexahedral cells Ωi,j,k (a cell of a structured grid is located by three
indexes i, j and k). The six faces are denoted by Σi+1/2,j,k, Σi−1/2,j,k, Σi,j+1/2,k, Σi,j−1/2,k,
Σi,j,k+1/2 and Σi,j,k−1/2. The unknowns (ρ, ρU , ρE) are averaged into each cell and stored in
the center of the cell (cell-centred method).
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Spatial discretization

Let us note :

- W = [ρ, ρU T, ρE]T the vector of conservative variables or state vector,

- Fc(W ) =
[
ρU , (ρU ⊗U ) + pI, ρEU + pU

]T
the convective flux matrix,

- Fd(W ,∇W ) =
[(0

0
0

)
,−(τ + τt),−(τ + τt)U + (q + qt)

]T
the diffusive flux matrix,

and F = Fc + Fd the flux matrix. Let us integrate the RANS equations (1.27) in the cell
Ωi,j,k with the notations we have just introduced. We get then the integrated form of the
RANS equations :

d

dt

ˆ
Ωi,j,k

W dΩ +
ˆ

Σi,j,k

[
Fc(W ) + Fd(W ,∇W )

]
n dΣ = 0, (1.29)

with Σi,j,k = Σi+1/2,j,k ∪Σi−1/2,j,k ∪Σi,j+1/2,k ∪Σi,j−1/2,k ∪Σi,j,k+1/2 ∪Σi,j,k−1/2. To simplify,
we forget the indexes (i, j, k) and we get then :

d

dt

ˆ
Ω
W dΩ +

ˆ
Σ

[
Fc(W ) + Fd(W ,∇W )

]
n dΣ = 0. (1.30)

Let us note Σ = ∪6
p=1Σp and VΩ =

´
Ω dΩ the volume of the cell Ω. Let us define :

W Ω =
1
VΩ

ˆ
Ω
W dΩ , (1.31)

the average value of W in the cell Ω and :

F Σp =
ˆ

Σp

[
Fc(W ) + Fd(W ,∇W )

]
np dΣ , (1.32)

the flux through the face Σp. (1.30) can be rewritten :

d

dt
(VΩ W Ω) = −

6∑
p=1

F Σp . (1.33)

For the discretization of (1.33), we have first to choose a numerical approximation W app
Ω of

W Ω : W app
Ω is simply the value of W in the center of Ω. We have then to choose a numerical

approximation of F Σp . (1.33) is one more time rewritten :

d

dt
(VΩ W app

Ω ) = −
6∑
p=1

F app
(
W app

Ω ,W app
Ω1
p
, ...,W app

Ω
Np
p

)
n Σp , (1.34)

with n Σp =
´

Σp
np dΣ and the cells Ωi

p are the Np neighbor cells of Ω used for the calculation
of the flux on the interface Σp. For our applications the grid does not depend on the time
and consequently VΩ neither.

Page 22 of 64



Equation (1.34) becomes finally :

d

dt
W app

Ω = − 1
VΩ

6∑
p=1

F app
(
W app

Ω ,W app
Ω1
p
, ...,W app

Ω
Np
p

)
n Σp = −R

(
W app

Ω

)
, (1.35)

with R
(
W app

Ω

)
the explicit numerical residual. We have now to choose an approximation

flux matrix F app.

Treatment of the convective flux

We use in this thesis the Roe scheme [36] to approximate Fc. This scheme can be used in a
upwind or centred form. The time discretization and the calculation of the gradient of the
objective function with respect to design variables require the resolution of a linear system
with the matrix ∂R/∂W . This matrix has a better conditioning when the Roe scheme is
upwind [11] so we use here the upwind Roe scheme. Let us note Fc(W ) = Fc(W )n the flux
in the direction n and (W l,W r) two state vectors. Then the Roe scheme is defined as :

FRoe(W
l,W r) =

1
2

[
Fc(W l) + Fc(W r)

]
− 1

2
|A|
[
W r −W l

]
, (1.36)

with |A| = M D(|λA|) M−1, D(|λA|) the diagonal matrix of the absolute values of the
eigenvalues of A and A = A(W l,W r) the Roe matrix satisfying the three conditions :

- A is diagonalizable with real eigenvalues,

- A
[
W r −W l

]
= Fc(W r)− Fc(W l) and,

- A(W ,W ) = dW Fc(W ).

The Roe flux (1.36) can be non-entropic [18]. Harten [18] introduced a correction to resolve
this problem :

FRoe(W
l,W r) =

1
2

[
Fc(W l) + Fc(W r)

]
− 1

2
Ψ(|A|)

[
W r −W l

]
, (1.37)

with Ψ(|A|) = M D(Ψ(|λA|)) M−1 and :

Ψ(z) =


|z| if |z| ≥ σ,

z2 + σ2

2σ
if |z| < σ,

(1.38)

for z in C. In (1.38), σ = εσ(|u| + |v| + |w| + a) and εσ is a parameter (εσ = 0.05 for our
applications). The Roe scheme is a first order scheme but can be extended to second order
using the MUSCL method of Van Leer [43]. Let us introduce the primitive variables vector
P = [ρ,U T, p]T in bijection with the conservative variables vector W = [ρ, ρU T, ρE]T.
Papp

Ω and W app
Ω are the approximations as introduced before. Let us assume that we want to

calculate the Roe flux through the face Σi+1/2,j,k (so in the i-direction) : we have to define

Page 23 of 64



two states W l
i+1/2,j,k and W r

i+1/2,j,k in (1.37), or - it is equivalent - two states P l
i+1/2,j,k and

Pr
i+1/2,j,k. These two states are defined as :

P l
i+1/2,j,k = Papp

Ω +
1
2

slopi(i, j, k),

Pr
i+1/2,j,k = Papp

Ω − 1
2

slopi(i+ 1, j, k),
(1.39)

with slopi the slope in the i-direction defined as :

slopi(i, j, k) = φ(Papp
Ω −Papp

i−1,j,k,P
app
i+1,j,k −Papp

Ω ), (1.40)

and (Papp
i−1,j,k,P

app
i−1,j,k) the approximations of the vector P in the cells Ωi−1,j,k and Ωi+1,j,k.

φ is a slope’s limiter and we use the one of Van Albada [42] :

φva(a, b) =
(b2 + ε)a+ (a2 + ε)b

a2 + b2 + ε
with 0 < ε� 1. (1.41)

Finally the approximation convective flux through the face Σi+1/2,j,k is :

Fcapp
(
W app

Ω ,W app
Ωi−1,j,k

,W app
Ωi+1,j,k

)
n Σi+1/2,j,k

= FRoe

(
W l

i+1/2,j,k,W
r
i+1/2,j,k

)
. (1.42)

Treatment of the diffusive flux

The diffusive flux matrix Fd involves gradients dependant of the state vector. It involves in
particular the gradient of the temperature ∇T . Let us define a coordinate system (x, y, z)
and set ∇T = [∂T/∂x, ∂T/∂y, ∂T/∂z]T. The derivatives are supposed to be uniform in a cell
Ω (normal n = [nx, ny, nz]) and we have then via the Green formula for ∂T/∂x :

∂T

∂x
=

1
VΩ

ˆ
Ω

∂T

∂x
dΩ =

1
VΩ

ˆ
Σ
Tnx dΣ. (1.43)

The formula (1.43) has then to be discretized and the gradients stored in the center of the
cell or in the center of the interfaces. See [28] to know more about the different discretization
schemes available in elsA.

Discretization of the Spalart-Allmaras model

The convection equation is discretized with a first order Roe scheme. Bompard gives the
explicit discretization in his PHD thesis [6].

Time discretization and linearization

Let us recall the equation (1.35) :

d

dt
W app

Ω = −R
(
W app

Ω

)
.

This equation is then discretized with a first order backward Euler method :

W k
Ω −W k−1

Ω

∆tk−1
= −R

(
W k

Ω

)
. (1.44)
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Two comments on (1.44). First, a implicit scheme is used because it authorises higher CFL
numbers and therefore reduces a lot the number of iterations and also the CPU time to reach
the convergence and second, we use a first order scheme because we only want to calculate
the steady state of (1.35).
The vector R

(
W k

Ω

)
is then linearized :

R
(
W k

Ω

)
= R

(
W k−1

Ω

)
+

∂R

∂W

(
W k−1

Ω

)
∆W k

Ω, (1.45)

with ∆W k
Ω = W k

Ω −W k−1
Ω . (1.44) becomes finally :[ 1

∆tk−1
I +

∂R

∂W

(
W k−1

Ω

)]
∆W k

Ω = −R
(
W k−1

Ω

)
. (1.46)

The dimension of the linear system (1.46) is huge. For our applications, its dimension is about
106 and we use a LU-SSOR relaxation method to solve it.

1.5 Discrete adjoint method

We present here the method used for the calculation of the gradient of the objective function
with respect to design variables called the discrete adjoint method. Let us recall the Navier-
Stokes equations (1.3) :

R(W (α),X (α)) = 0.

Differentiating these equations we get :

∂R

∂W

dW

dα
+
∂R

∂X

dX

dα
= 0, (1.47)

which can be rewritten :

dW

dα
= −

( ∂R
∂W

)−1 ∂R

∂X

dX

dα
. (1.48)

The gradient of F with respect to α, denoted by ∇αF or dF/dα, has the following expression :

∇αF =
∂F

∂X

dX

dα
+

∂F

∂W

dW

dα
. (1.49)

Using (1.48) we obtain :

∇αF =
∂F

∂X

dX

dα
− ∂F

∂W

( ∂R
∂W

)−1 ∂R

∂X

dX

dα
. (1.50)

Assuming there exists a vector λ such that :( ∂R
∂W

)T
λ = −

( ∂F
∂W

)T
, (1.51)
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The gradient of F with respect to α can be finally rewritten :

∇αF =
∂F

∂X

dX

dα
+ λT ∂R

∂X

dX

dα
. (1.52)

Let us recall that dX /dα is given by Padge , ∂R/∂X by elsA, ∂F/∂X by Zapp and λ
through the iterative resolution of the equation (1.51). This equation is a linear system of
huge size nW (∼ 105). The principal interest of this method is that its cost does not depend
on the number of design variables and that is why it is used for industrial configurations with
hundreds of design variables.
Let us say just one word about the resolution of (1.51). We use the so-called frozen-µt [26]
approximation. During the mesh deformation, the turbulent viscosity µt does not change :
its values are frozen. The principal interest of this approximation is that the expression of
∂R/∂W does not depend on the choice and the complexity of the turbulence model.

1.6 Optimization algorithm

We present in this section the optimization algorithm used for the resolution of our problem.
Let us recall the single-point optimization problem (1.5) :

Minimize F (W (α),X (α),Π),
for Π = Πk given,
with respect to α,
subject to α ∈ Dα.

(1.53)

All we will say in this section would be the same for F̃ instead of F for multipoint optimization
problems. The L(imited memory)-BFGS-B(ound constrained) algorithm has been chosen to
solve (1.5). This algorithm, first described by Byrd et al. [8] is a generalization of the L-BFGS
algorithm [27] for optimization problems with bounds. These two algorithms are themselves
an extension of the well known BFGS algorithm, which works for unconstrained optimization
problems only, described separately in 1970 by Broyden [7], Fletcher [14], Goldfarb [17] and
Shanno [38].
The function F is a non-linear function whose gradient with respect to α is available. These
three algorithms don’t require the second derivatives : the Hessian matrix is approximated
using rank-one updates specified by gradient evaluations. Let us begin with the BFGS algo-
rithm for unconstrained optimization problems. To simplify the notations we do not write
with bold font and do not underline vectors and matrices in this section.
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BFGS algorithm
Choose an initial guess α0, an initial approximate Hessian matrix H0 and a
stopping criterion crt (0)
Evaluate ∇F (α0) (1)
Initialize k ← 0
while crt false do

Solve Hkpk = −∇F (αk) to get pk (2)
Perform a line search to get an acceptable stepsize ak in the direction pk (3)
Update sk ← akpk and αk+1 ← αk + sk
Evaluate ∇F (αk+1) (4)
Update yk ← ∇F (αk+1)−∇F (αk)

Update Hk+1 ← Hk +
yky

T
k

yT
k sk
−
Hksks

T
kHk

sT
kHksk

(5)

Update k ← k + 1
end while

The initial approximate Hessian matrix H0 for (0) has to be a symmetric definite positive
matrix (usually a diagonal matrix with positive components). The evaluation of the gradient
for (1) and (4) is given trough the resolution of an adjoint equation. The update (5) can be
replaced by an update of the inverse of Hk+1 applying the Shermann-Morrison formula :

H−1
k+1 =

(
I −

sky
T
k

yT
k sk

)
H−1
k

(
I −

yks
T
k

yT
k sk

)
+
sks

T
k

yT
k sk

. (1.54)

and (2) becomes then simply pk+1 = −H−1
k+1∇F (αk+1). See [8] to know more about the line

search (3).
The computational cost of one iteration of the algorithm is O(n2

α) since the algorithm requires
only matrix-vector multiplications. Moreover it is necessary to have nα(nα + 1)/2 storage lo-
cations at each iteration since the symmetric matrix Hk (or H−1

k ) has to be kept.

This is precisely the interest of the L-BFGS method which never explicitly forms or stores
this matrix. Instead it stores information from the past m iterations (with m � nα) and
uses only this information to implicitly do operations requiring the Hessian (or the inverse
Hessian). Let us set ρk = 1/(yT

k sk) and vk = (I − ρkyksT
k ). (1.54) becomes then :

H−1
k+1 = vT

kH
−1
k vk + ρksks

T
k . (1.55)

Instead of storing H−1
k in order to update H−1

k+1 (memory cost nα(nα + 1)/2), Nocedal has
shown in [27] that it is equivalent to store (yi, si)0≤i≤k and H−1

0 (memory cost (2(k+1)+1)nα
at the kth iteration if H−1

0 is diagonal) and update H−1
k+1 with :
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H−1
k+1 = vT

k v
T
k−1 . . . v

T
0 H

−1
0 v0 . . . vk−1vk

+ vT
k . . . v

T
1 ρ0s0s

T
0 v1 . . . vk

...
+ vT

k v
T
k−1ρk−2sk−2s

T
k−2vk−1vk

+ vT
k ρk−1sk−1s

T
k−1vk

+ ρksks
T
k .

(1.56)

The idea of Nocedal is then to choose an integer m (with m � nα) and to discard the old
information storing only the last m (yi, si). The first m − 1 iterations, L-BFGS and BFGS
generate the same search direction : for k+ 1 ≤ m (1.56) is used. But for k+ 1 > m a special
update is used, which uses only the last m (yi, si) and is given by :

H−1
k+1 = vT

k v
T
k−1 . . . v

T
k−m+1H

−1
0 vk−m+1 . . . vk−1vk

+ vT
k . . . v

T
k−m+2ρk−m+1sk−m+1s

T
k−m+1vk−m+2 . . . vk

...
+ vT

k ρk−1sk−1s
T
k−1vk

+ ρksks
T
k .

(1.57)

Using (1.56) and (1.57), we only need to have (2m+ 1)nα storage locations at each iteration :
if m� nα, (2m+1)nα = O(nα) for L-BFGS which has be compared to nα(nα+1)/2 = O(n2

α)
for BFGS.

The L-BFGS-B algorithm [8] is not presented here. It uses limited BGGS matrices to ap-
proximate the Hessian of the objective function and the gradient projection approach [5] to
determine the active set of constraints.
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Chapter 2

Application for the design of turbomachine blades :
minimization of the entropy generation rate around a LS89

blade

Our test case is the LS89 blade of a highly loaded transonic turbine distributor. This blade
has been designed by the Von Karman Institute in the early 1990s and a lot of experimental
studies have been carried out for very different physical conditions [2].

2.1 Presentation of the two-dimensional test case

We have chosen to focus on the condition MUR235 [2] which corresponds to a nominal con-
dition of utilisation. The figure 2.1 shows the mesh used. It is a multi-block mesh with
structured blocks.

Figure 2.1: Mesh of the two-dimensional LS89 test case : 35 blocks, 153 482 cells, 140 330
nodes.

The mesh has been cut into many blocks in order to perform parallel computing on 16
processors (4 quad-core Intel Xeon Nehalem 2.66 Ghz processors).
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The table 2.1 gives a few geometrical parameters describing the LS89 blade.

chord c (mm) 67.647
pitch g/c 0.850
leading edge radius rLE/c 0.061
trailing edge radius rTE/c 0.0105

Table 2.1: Geometrical parameters of the LS89 blade.

The table 2.2 indicates the Reynolds and Mach numbers on the inlet boundary ∂Ω1.

Re1 264 170
M1 0.15

Table 2.2: Reynolds and Mach numbers on the inlet boundary ∂Ω1.

The table 2.3 gives the boundary conditions on the inlet and outlet boundaries ∂Ω1 and ∂Ω2.

Inlet : injection Outlet : constant pressure
Pt1 (Pa) 182 704.1 Π = Ps2/Ps1 0.583
Tt1 (K) 413.3
β1 (deg.) 0.0

Table 2.3: Boundary conditions.

The direction of the flow d1 is given by the angle of injection β1.
The MUR235 condition corresponds to a transonic flow. There is a shock wave on the upper
surface of the blade and a large turbulent wake from the trailing edge. At this condition the
entropy generation rate, calculated via elsA and Zapp (with 16 processors and a CPU cost
∼ 3840 seconds), is equal to 9.67%. The stopping criteria for elsA was the number of
iterations (1500) of the CFD calculation chosen in order to get numerical residuals on density
∼ 10−6.

2.2 Entropy generation rate minimization without constraint
on the mass flow rate and with free leading edge

We study in this section the entropy generation rate minimization without constraint on the
mass flow rate and with free leading edge.

2.2.1 Setting of the single-point optimization problem

The aim of a turbine is to prepare the flow before arriving in the rotative part, speeding up it
and deflecting it. The speed up of the flow is generated by a pressure ratio Π = Ps2/Ps1 < 1
on the outlet boundary ∂Ω2. This pressure ratio Π characterizes the flow : a given pressure
ratio defines a specific condition. The nominal condition MUR235 corresponds to Π = 0.583
and from now we note Π = Πnom.
In the case of a flow without entropy generation or, and it is equivalent, without loss of total
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pressure, the Mach number on ∂Ω2 is equal to the maximum Mach number which can be
generated by Π, called the isentropic Mach number M2, is. We have in this case the relation :

Ps2
Ps1

=
(1 +

γ − 1
2

M2
1 )

γ
γ−1

(1 +
γ − 1

2
M2

2, is)
γ
γ−1

. (2.1)

The relation (2.1) shows that a given pressure ratio Π corresponds to a given M2, is and vice
versa : the condition MUR235 corresponds to M2, is = 0.927.
The goal is then, from a given ratio Π, to obtain the highest Mach number on ∂Ω2. A way to
maximize M2 is to minimize the entropy generation rate. It is classically used for the shape
optimization for turbine blades [23, 44]. The entropy generation rate is characterized, for
two-dimensional distributor turbine flows, by the ratio Pt2/Pt1. More precisely, minimizing
the entropy generation rate is equivalent to maximizing the ratio Pt2/Pt1 so the objective
function used is :

F (α) = 1− Pt2(α)
Pt1

, (2.2)

and the single-point optimization problem at the condition MUR235 is :

Minimize 1− Pt2(α,Π)
Pt1

,

for Π = Πnom,
with respect to α,
subject to α ∈ Dα.

(2.3)

Let us recall that α is the design variables vector of size nα and that we use a CAD
parametrization. For our applications nα = 18 (see section 2.2.3). Pt2 is calculated as
follows :

Pt2 =
1
Q2

¨
X∈∂Ω2

Pt(X ) ρ(X )U (X ) · n2(X ) dΣ, (2.4)

with Q the mass flow rate defined by :

Q =
¨

X∈∂Ω2

ρ(X )U (X ) · n2(X ) dΣ. (2.5)

Equation (2.8) is a mass flow rate average of Pt on ∂Ω2. This kind of average is classically
used for total variables [35]. Equations (2.8) and (2.9) are calculated by the post-processing
tool Zapp.
The goal of the optimization is to reduce the shock intensity and the wake width in order
to minimize the entropy generation rate. We present in the section 2.2.4 the results of the
single-point optimization.
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2.2.2 Setting of the multipoint optimization problem

As we explained in the section 1.1.2, it can be interesting to minimize F not only for the
nominal condition Πnom but over a continuous interval of conditions IΠ around Πnom = 0.583.
We choose IΠ = [0.506 , 0.633], which corresponds to M2, is = [0.85 , 1.05], and we sample it
uniformly with NΠ = 21 > nα = 18. We perform the GSA algorithm and we obtain five
different conditions. The table 2.12 shows these conditions and the corresponding isentropic
Mach numbers.
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Conditions C01 C05 C15 C17 C21
Pressure ratio Π Π01=0.633 Π05=0.607 Π15=0.543 Π17=0.530 Π21=0.506
Isentropic Mach number M2, is 0.85 0.89 0.99 1.01 1.05

Table 2.4: Pressure ratios selected by GSA and corresponding isentropic Mach numbers.

The algorithm GSA requires calculations of gradient ∇αF (α,Πk) for the 21 conditions Πk.
Each gradient calculation uses all the modules of the optimization process (from Padge to
adjoint Padge , see table 1.2 section 1.1.3) and is performed on 16 processors. The CPU cost
of one iteration of the optimization process is about 7200 seconds.
We can now define F̃ :

F̃ (α) = w01 F (α,Π01) + w05 F (α,Π05) + w15 F (α,Π15) + w17 F (α,Π17) + w21 F (α,Π21).

We present in the section 2.2.5 the results of the multipoint optimization with two different
types of weights.

2.2.3 Parametrization and gradient validation with finite differences

The LS89 blade has been parametrized with 18 design variables. The trailing edge of the
blade has been frozen in order to keep the same direction of the wake (as we said in section
2.1.2 the turbine has to prepare the flow before arriving in the rotative part and one of the
important criteria is the flow deflection). The thicknesses have been also frozen for structural
constraints.
We have compared the values of the gradient ∇αF given by the discrete adjoint method with
values given by finite differences (using a second order scheme). The number of iterations
(800) of the iterative resolution of the adjoint equation (1.51) has been chosen in order to
provide low errors : the average error is equal to 1.86%. The figure 2.2 shows the error with
respect to design variables. We have actually computed ∇α(1000F ) because the derivatives
have a relatively low level and a few modules of the optimization process work only with
single precision.
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Figure 2.2: Values of the gradient ∇αF given by the discrete adjoint method compared with
values given by finite differences.
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The design variables #8 and #13 have the highest errors : 19.92% and 5.2%. These two
variables represent curvatures of the blade at two different positions. The result is moreover
very satisfying because the average error is very low.

2.2.4 Results of the single-point optimization

We present in this section the results of the single-point optimization obtained with the
LBFGSB algorithm. The figure 2.3 shows the optimization history. The table 2.5 synthesizes
the results.
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Figure 2.3: Evolution of the objective function with design cycles and correlative augmenta-
tion of the mass flow rate.

Initial value Final value Variation (%)
Entropy generation rate (%) 9.67 9.47 - 2.07
Normalized mass flow rate 9.94 10.49 + 5.53

Table 2.5: Inital and final values of the entropy generation rate and the mass flow rate.

A few comments about the figure 2.3. The calculation has been performed on 16 parallel
processors. The convergence has been reached after 30 iterations of the optimization process
and for a CPU cost equal to about 216000 seconds (CPU cost ∼ 7200 seconds per iteration,
as said in section 2.1.3). The entropy generation has been successfully reduced of 2.07%.
The diminution of total pressure loss has correlatively increased the mass flow rate. In other
words, a part of the energy which was lost through the shock wave and inside the turbulent
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wake has been given back to the flow, increasing the mass flow rate through ∂Ω2. The figure
2.4 compares the initial and final blade geometries.
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Figure 2.4: Comparison of initial and final LS89 blade geometries.

The redesigned LS89 blade best guides the flow delaying the flow separation and consequently
the width of the trailing edge wake. The redesigned geometry is not C2 at the leading edge
which suggests that the parametrization has to be improved (the leading edge is parametrized
by one radius of curvature and it seems two or more could be a better way to characterize it).
Figures 2.5 and 2.6 compare the characteristics of the initial and the redesigned LS89 blades.
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Figure 2.5: Comparison of the characteristics of the initial and the redesigned LS89 blades.
The nominal condition is represented with larger markers.
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Figure 2.6: Comparison of the characteristics of the initial and the redesigned LS89 blades.
The nominal condition is represented with larger markers.
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The figure 2.5 shows that the mass flow rate has been increased all over the characteristic. For
a given geometry, increasing the mass flow rate raises the entropy generation rate. The goal
of the optimization is then to design shapes which generate higher mass flow rates without
increasing the entropy generation rate : the figure 2.6 indicates the entropy generation rate
has been reduced for a few conditions but also increased for others. The table 2.6 synthesizes
the results on the interval of pressure ratio [0.506 , 0.633].

Condition C21 C17 C15 nominal C05 C01
Pressure ratio 0.506 0.530 0.543 0.583 0.607 0.633
Variation of entropy
generation rate (%) + 0.76 - 0.15 - 0.90 - 2.07 - 2.21 - 2.51

Table 2.6: Variation of entropy generation rate with respect to pressure ratio.

The objective function has been reduced for conditions C01, C05, C15, C17 and for the
nominal condition, but has been increased for condition C21. This is precisely what designers
call a poor design and a way to obtain better designs is given by the multipoint optimization.

2.2.5 Results of the multipoint optimization

We present in this section the results of the multipoint optimization for two types of weights.
We present first a multipoint optimization with unit weights and present then a multipoint
optimization with non-unit weights. We compute the calculations on 16 parallel processors.
The cost of one iteration of the optimization process is here much higher because one iteration
of the multipoint optimization corresponds to five iterations of the single-point optimization
process since the evaluation of the multipoint objective function requires five single-point
objective function evaluations.

Unit weights

In this section we use unit weights so the objective function F̃ can be written as follows :

F̃ (α) = F (α,Π01) + F (α,Π05) + F (α,Π15) + F (α,Π17) + F (α,Π21).

The evaluation of each F (α,Πk) is performed on 16 parallel processors so then the optimiza-
tion process requires here 16 × 5 = 80 processors. The figure 2.7 shows the optimization
history and the table 2.7 synthesizes the results.

Condition C21 C17 C15 nominal C05 C01
Pressure ratio 0.506 0.530 0.543 0.583 0.607 0.633
Variation of entropy
generation rate (%) - 2.57 - 1.66 - 1.11 - 0.81 - 0.92 - 1.13

Table 2.7: Variation of entropy generation rate with respect to pressure ratio.
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Figure 2.7: Evolution of the objective function with design cycles and correlative reduction
of the entropy generation rate at the five selected conditions.
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The figure 2.7 and the table 2.7 show that the entropy generation rate has been successfully
reduced for all the conditions and even all over the characteristic as shown on the figure
2.8. The convergence has been reached after 40 iterations of the optimization process and
for a CPU cost equal to about 1440000 seconds (CPU cost ∼ 7200 × 5 = 36000 seconds per
iteration, as said in section 2.2.2). The figure 2.9 shows that the given back energy has been
transmitted to the flow through an augmentation of the mass flow rate.
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Figure 2.8: Comparison of the characteristics of the initial and the redesigned LS89 blades.
The nominal condition is represented with larger markers.
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Figure 2.9: Comparison of the characteristics of the initial and the redesigned LS89 blades.
The nominal condition is represented with larger markers.

And finally, the figure 2.10 compares the initial and final LS89 blade geometries.
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Figure 2.10: Comparison of initial and final LS89 blade geometries.
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The redesigned geometry is one more time not C2 at the leading edge which suggests that the
parametrization we used is not very well adapted for this blade.

Non-unit weights

We present in this section results obtained for a multipoint optimization with non-unit
weights. The aim is to force the algorithm to target the Pareto front. Let us recall the
expression of F̃ :

F̃ (α) = w01 F (α,Π01) + w05 F (α,Π05) + w15 F (α,Π15) + w17 F (α,Π17) + w21 F (α,Π21).

If one of the functions, let us say F (α,Π01), can be reduced a lot then the algorithm could just
reduce this function and increase the others, just because the descent direction taken to reduce
F (α,Π01) is the steepest one. The idea is then to perform a single-point optimization for
each condition (with variation of entropy generation rate ∆egr) and choose the weights equal
to the absolute values of 1/∆egr. The table 2.8 gives the variations of entropy generation
rate for single-point optimizations and the associated weights.

Condition C21 C17 C15 C05 C01
Variations of entropy generation rate
for a single-point optimization ∆egr (%) - 2.24 - 1.53 - 1.47 - 2.08 - 2.63
Associated weights 1/∆egr 44.5 65.4 68.0 48.1 38.0

Table 2.8: Variations of entropy generation rate for single-point optimizations and associated
weights for the multipoint optimization.

In practice, the variations ∆egr could be estimated by the designers so the weights are not
necessary calculated with a single-point optimization.
We have chosen actually weights equal to 0.1/∆egr in order to obtain reasonable values for
the objective function (let us recall that we compute 1000F (α,Π) and not F (α,Π) for the
gradient accuracy). The objective function F̃ is then :

F̃ (α) = 3.08F (α,Π01) + 4.81F (α,Π05) + 6.80F (α,Π15) + 6.54F (α,Π17) + 4.45F (α,Π21).

The evaluation of each F (α,Πk) is performed on 16 parallel processors so then the optimiza-
tion process requires here 16 × 5 = 80 processors. The figure 2.11 shows the optimization
history and the table 2.9 synthesizes the results.

Condition C21 C17 C15 nominal C05 C01
Pressure ratio 0.506 0.530 0.543 0.583 0.607 0.633
Variation of entropy
generation rate (%) - 2.35 - 1.58 - 1.06 - 0.71 - 0.77 - 0.90

Table 2.9: Variation of entropy generation rate with respect to pressure ratio.
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Figure 2.11: Evolution of the objective function with design cycles and correlative reduction
of the entropy generation rate at the five selected conditions.
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The figure 2.11 and the table 2.9 shows that the entropy generation rate has been one more
time successfully reduced for all the conditions and even all over the characteristic as shown
on the figure 2.12. The convergence has been reached after 10 iterations of the optimization
process and for a CPU cost equal to about 360000 seconds The figure 2.13 shows that this
reduction is correlated to an augmentation of mass flow rate.
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Figure 2.12: Comparison of the characteristics of the initial and the redesigned LS89 blades.
The nominal condition is represented with larger markers.
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Figure 2.13: Comparison of the characteristics of the initial and the redesigned LS89 blades.
The nominal condition is represented with larger markers.

The figure 2.14 compares the initial and final LS89 blade geometries.
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Figure 2.14: Comparison of initial and final LS89 blade geometries.
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2.2.6 Comparison of the two multipoint optimizations

The two multipoint optimizations provide satisfying results (table 2.10).

Condition C21 C17 C15 nominal C05 C01
Pressure ratio 0.506 0.530 0.543 0.583 0.607 0.633
Variation of entropy generation rate (%) with
unit weights - 2.57 - 1.66 - 1.11 - 0.81 - 0.92 - 1.13
non-unit weights - 2.35 - 1.58 - 1.06 - 0.71 - 0.77 - 0.90

Table 2.10: Comparison of variations of entropy generation rate for the two multipoint opti-
mizations.

The multipoint optimization with unit weights gives lightly better results but for a CPU cost
much higher (table 2.11).

Unit weights Non-unit weights
Number of iterations of the optimization process 40 10
CPU cost (seconds) 1440000 360000

Table 2.11: Comparison of CPU cost to reach the convergence.

The figure 2.15 compares the two geometries.
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Figure 2.15: Comparison of initial and final LS89 blade geometries.
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2.3 Entropy generation rate minimization with constraint on
the mass flow rate and with frozen leading edge

The redesigned LS89 of last section is not C2. We have worked then on a new parametriza-
tion with 25 design variables and a frozen leading edge. We have performed a single-point
optimization with it and the results are very different : the entropy generation decreased of
0.8% but the mass flow rate also decreased of 2.28%. To avoid the entropy decrease caused
by mass flow rate reduction we choose then to minimize the entropy generation rate with
constraint on the mass flow rate and with frozen leading edge.

2.3.1 Setting of the single-point optimization problem

The objective function is then :

F (α,Π) =
S(α,Π)
S0(Π)

+ σ
(Q(α,Π)
Q0(Π)

− 1
)2
, (2.6)

where S(α,Π) is the outlet surface averaged entropy generation rate :

S(α,Π) = 1− Pt2(α,Π)
Pt1

, (2.7)

with :

Pt2(α,Π) =
1
S2

¨
X∈∂Ω2

Pt(X ) dΣ, (2.8)

and Q(α,Π) the mass flow rate :

Q =
¨

X∈∂Ω2

ρ(X )U (X ) · n2(X ) dΣ. (2.9)

The index 0 corresponds of values for the initial LS89 blade. We present in the section 2.3.4
the results of the single-point optimization.

2.3.2 Setting of the multipoint optimization problem

As we explained in the section 1.1.2, it can be interesting to minimize F not only for the
nominal condition Πnom but over a continuous interval of conditions IΠ around Πnom = 0.583.
We choose here a larger set IΠ = [0.476 , 0.732], which corresponds toM2, is = [0.7 , 1.1], and we
sample it uniformly. We perform the GSA algorithm and we obtain five different conditions.
The table 2.12 shows these conditions and the corresponding isentropic Mach numbers.
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Conditions C01 C05 C14 C17 C21
Pressure ratio Π Π01=0.732 Π05=0.680 Π15=0.562 Π17=0.524 Π21=0.476
Isentropic Mach number M2, is 0.7 0.78 0.96 1.02 1.1

Table 2.12: Pressure ratios selected by GSA and corresponding isentropic Mach numbers.

The algorithm GSA requires calculations of gradient ∇αF (α,Πk) for the 21 conditions Πk.
Each gradient calculation uses all the modules of the optimization process (from Padge to
adjoint Padge , see table 1.2 section 1.1.3) and is performed on 16 processors. The CPU cost
of one iteration of the optimization process is about 7200 seconds.
We can now define F̃ :

F̃ (α) = w01 F (α,Π01) + w05 F (α,Π05) + w14 F (α,Π14) + w17 F (α,Π17) + w21 F (α,Π21).

We present in the section 2.3.5 the results of the multipoint optimization with two different
types of weights.

2.3.3 Parametrization and gradient validation with finite differences

The LS89 blade has been parametrized with 25 design variables. The trailing edge of the
blade has been frozen in order to keep the same direction of the wake (as we said in section
2.2.1 the turbine has to prepare the flow before arriving in the rotative part and one of the
important criteria is the flow deflection). The thicknesses have been also frozen for structural
constraints. The leading edge has been frozen to provide C2 geometries.
We have compared the values of the gradient ∇αF given by the discrete adjoint method with
values given by finite differences (using a second order scheme). The number of iterations
(800) of the iterative resolution of the adjoint equation (1.51) has been chosen in order to
provide low errors : the average error is equal to 1.65%. The figure 2.2 shows the error with
respect to design variables. We have actually computed ∇α(100F ) because the derivatives
have a relatively low level and a few modules of the optimization process work only with
single precision.
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Figure 2.16: Values of the gradient ∇αF given by the discrete adjoint method compared with
values given by finite differences.
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The design variables #1, #9 and #15 have the highest errors : 14.19%, 9.72% and 12.41%.
These three variables represent curvatures of the blade at three different positions. The result
is moreover very satisfying because the average error is very low.

2.3.4 Results of the single-point optimization

We present in this section the results of the single-point optimization obtained with the
LBFGSB algorithm. The figure 2.17 shows the optimization history. The table 2.13 synthe-
sizes the results.
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Figure 2.17: Evolution of the entropy generation rate with design cycles and correlative
evolution of the constrained mass flow rate.

Initial value Final value Variation (%)
Entropy generation rate (%) 9.674 9.613 - 0.627
Normalized mass flow rate 9.943 9.939 - 0.043

Table 2.13: Inital and final values of the entropy generation rate and the mass flow rate.

A few comments about the figure 2.17. The calculation has been performed on 16 parallel
processors. The convergence has been reached after 20 iterations of the optimization process
and for a CPU cost equal to about 144000 seconds (CPU cost ∼ 7200 seconds per iteration, as
said in section 2.3.2). The entropy generation has been successfully reduced of 0.627%. The
mass flow rate fluctuation is very low and more than acceptable : Wang and his collaborators
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[44] estimate that the maximum acceptable fluctuation is ± 0.5%. The figure 2.18 compares
the initial and final blades geometries.
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Figure 2.18: Comparison of initial and final LS89 blade geometries.

Figure 2.19 shows the variation of entropy generation rate ∆egr with respect to Ps2/Ps1.
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Figure 2.19: Variation of entropy generation rate ∆egr with respect to the pressure ratio
Ps2/Ps1. The nominal condition is represented with larger markers.
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Figure 2.20 compares the mass flow rate of the initial and the redesigned LS89 blades for the
pressure ratios selected by the GSA algorithm.
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Figure 2.20: Comparison of the mass flow rate of the initial and the redesigned LS89 blades
with respect to the pressure ratio Ps2/Ps1. The nominal condition is represented with larger
markers.

The table 2.14 synthesizes the results on the interval of pressure ratio [0.476 , 0.732].

Condition C21 C17 C14 nominal C05 C01
Pressure ratio 0.476 0.524 0.562 0.583 0.680 0.732
∆egr (%) + 2.414 + 1.326 - 0.354 - 0.627 - 0.899 - 1.012
∆Q (%) + 1.238 + 0.617 + 0.052 - 0.043 - 0.493 - 0.708

Table 2.14: Variation of entropy generation rate and mass flow rate with respect to pressure
ratio.

The entropy generation rate has been reduced for conditions C01, C05, nominal and C14
but increased for conditions C17 and C21. Moreover the mass flow rate fluctuation is not
acceptable for conditions C01, C17 and C21. This is precisely what designers call a poor
design and a way to obtain better designs is given by the multipoint optimization.

2.3.5 Results of the multipoint optimization

We present in this section the results of the multipoint optimization for two types of weights.
We present first a multipoint optimization with unit weights and present then a multipoint
optimization with non-unit weights. We compute the calculations on 16 parallel processors.
The cost of one iteration of the optimization process is here much higher because one iteration
of the multipoint optimization corresponds to five iterations of the single-point optimization
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process since the evaluation of the multipoint objective function requires five single-point
objective function evaluations.

Unit weights

In this section we use unit weights so the objective function F̃ can be written as follows :

F̃ (α) = F (α,Π01) + F (α,Π05) + F (α,Π14) + F (α,Π17) + F (α,Π21).

The figure 2.21 shows the optimization history and compares the initial and final LS89 blade
geometries.
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Figure 2.21: Evolution of the objective function with design cycles and comparison of initial
and final LS89 blade geometries.
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Figure 2.22 shows the variation of entropy generation rate ∆egr with respect to Ps2/Ps1.
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Figure 2.22: Variation of entropy generation rate ∆egr with respect to the pressure ratio
Ps2/Ps1. The nominal condition is represented with larger markers.

Figure 2.23 compares the mass flow rate of the initial and the redesigned LS89 blades for the
pressure ratios selected by the GSA algorithm.

0.45 0.47 0.49 0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.65 0.67 0.69 0.71 0.73 0.75
9

9.2

9.4

9.6

9.8

10

10.2
Normalized mass flow rate Q vs. pressure ratio Ps2/Ps1

Ps2/Ps1

Q

 

 

LS89
Redesigned LS89

Figure 2.23: Comparison of the mass flow rate of the initial and the redesigned LS89 blades
with respect to the pressure ratio Ps2/Ps1. The nominal condition is represented with larger
markers.
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The table 2.15 synthesizes the results on the interval of pressure ratio [0.476 , 0.732].

Condition C21 C17 C14 nominal C05 C01
Pressure ratio 0.476 0.524 0.562 0.583 0.680 0.732
∆egr (%) - 0.917 - 1.053 + 0.040 + 0.148 - 0.039 - 0.083
∆Q (%) + 0.021 + 0.054 + 0.012 - 0.030 - 0.131 - 0.176

Table 2.15: Variation of entropy generation rate and mass flow rate with respect to pressure
ratio.

The entropy generation rate has been reduced for conditions C01, C05, C17, and C21 but
increased for the nominal condition and condition C14. The mass flow rate fluctuations are
acceptable. This is not a good optimization since the entropy generation increased for a few
conditions and in particularly for the nominal one. Using non-unit weights seems then the
only way to get better results.
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Non-unit weights

In this section we use non-unit weights equal to 1/∆egr. The figure 2.24 shows the optimiza-
tion history and compares the initial and final LS89 blade geometries.
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Figure 2.24: Evolution of the objective function and comparison of geometries.
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Figure 2.25 shows the variation of entropy generation rate ∆egr with respect to Ps2/Ps1.
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Figure 2.25: Variation of entropy generation rate ∆egr with respect to the pressure ratio
Ps2/Ps1. The nominal condition is represented with larger markers.

Figure 2.26 compares the mass flow rate of the initial and the redesigned LS89 blades for the
pressure ratios selected by the GSA algorithm.
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Figure 2.26: Comparison of the mass flow rate of the initial and the redesigned LS89 blades
with respect to the pressure ratio Ps2/Ps1. The nominal condition is represented with larger
markers.
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The table 2.16 synthesizes the results on the interval of pressure ratio [0.476 , 0.732].

Condition C21 C17 C14 nominal C05 C01
Pressure ratio 0.476 0.524 0.562 0.583 0.680 0.732
∆egr (%) - 0.420 - 0.904 - 0.168 - 0.075 - 0.227 - 0.264
∆Q (%) + 0.175 + 0.040 - 0.026 - 0.072 - 0.210 - 0.273

Table 2.16: Variation of entropy generation rate and mass flow rate with respect to pressure
ratio.

The entropy generation rate has been successfully reduced for all conditions. The mass flow
rate fluctuations are acceptable. This is a good optimization.
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Conclusion

In the present master thesis a numerical aerodynamic design technique for 2D turbine
blades, based on a multipoint shape optimization with discrete adjoint method, has been
developed and validated in an environment involving industrial numerical codes.

I worked first on a bibliography of both applied mathematics (optimization, Finite Volume
Method, parametrization with non-uniform B-splines) and aerodynamics (turbine character-
istics, turbulence models). I focused then on the choice of the test case flow characteristics
(boundary conditions, Reynolds and Mach numbers, turbulence model) and on the sensitivity
of the flow variables with respect to these characteristics. I have also analysed the sensitivity
of the flow variables with respect to the numerical parameters of the CFD solver (number of
iterations, CFL number) and to the turbulence model. Once the flow calculation was cor-
rectly set I have worked on the parametrization of the blade. A few different parametrizations
have been tested from 18 to 53 variables, with and without frozen variables. One of the most
important part of this work was the setting of the optimization problem. A few objective
functions have been tested (aerodynamic drag, surface averaged pressure ratio, mass flow rate
averaged pressure ratio) and with or without constraints formulations have been tried. The
gradient of the objective function with respect to the design variables has been validated with
finite differences and the choice of the optimization algorithm has been then driven by the
setting of the optimization problem.

The single-point optimization has engendered a poor design, decreasing the objective func-
tion at the targeted condition but increasing it for some others around. The results of the
multipoint optimization have been on the other hand very satisfying. The redesigned blades
have lower entropy generation rate for all the conditions.

This method has now to be adapted to more complex configurations (e.g. 3D rotor turbine
configurations). The discrete adjoint method does not have been validated at CERFACS for
such rotative configurations. The entropy generation rate could be replace by the isentropic
ratio. It would be also interesting to optimize with a larger set of conditions IΠ. An other
possible work would be to perform the GSA algorithm at each iteration of the optimization
process in order to see if the dimension of the Kα, NΠ

spaces varies during the optimization
process.
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